Valner Robert, Masnavi Houman, Rybalskii Igor, Põlluäär Rauno, Kõiv Erik, Aabloo Alvo, Kruusamäe Karl, Singh Arun Kumar
Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Tartu, Estonia.
Front Robot AI. 2022 Aug 23;9:922835. doi: 10.3389/frobt.2022.922835. eCollection 2022.
In hospitals, trained medical staff are often, in addition to performing complex procedures, spending valuable time on secondary tasks such as transporting samples and medical equipment; or even guiding patients and visitors around the premises. If these non-medical tasks were automated by deploying mobile service robots, more time can be focused on treating patients or allowing well-deserved rest for the potentially overworked healthcare professionals. Automating such tasks requires a human-aware robotic mobility system that can among other things navigate the hallways of the hospital; predictively avoid collisions with humans and other dynamic obstacles; coordinate task distribution and area coverage within a fleet of robots and other IoT devices; and interact with the staff, patients and visitors in an intuitive way. This work presents the results, lessons-learned and the source code of deploying a heterogeneous mobile robot fleet at the Tartu University Hospital, performing object transportation tasks in areas of intense crowd movement and narrow hallways. The primary use-case is defined as transporting time-critical samples from an intensive care unit to the hospital lab. Our work builds upon Robotics Middleware Framework (RMF), an open source, actively growing and highly capable fleet management platform which is yet to reach full maturity. Thus this paper demonstrates and validates the real-world deployment of RMF in an hospital setting and describes the integration efforts.
在医院里,训练有素的医护人员除了要进行复杂的手术外,还常常要把宝贵的时间花在诸如运送样本和医疗设备等次要任务上;甚至还要带领患者和访客在医院各处走动。如果通过部署移动服务机器人来自动化这些非医疗任务,就能将更多时间集中在治疗患者上,或者让可能过度劳累的医护人员得到应有的休息。要实现这些任务的自动化,就需要一个具备人类感知能力的机器人移动系统,该系统除其他功能外,还能在医院走廊中导航;预测并避免与人类和其他动态障碍物发生碰撞;在一群机器人和其他物联网设备之间协调任务分配和区域覆盖;并以直观的方式与工作人员、患者和访客进行交互。本文展示了在塔尔图大学医院部署异构移动机器人机队的结果、经验教训以及源代码,这些机器人在人群密集移动和走廊狭窄的区域执行物体运输任务。主要用例定义为将对时间要求严格的样本从重症监护室运送到医院实验室。我们的工作基于机器人中间件框架(RMF),这是一个开源、不断发展且功能强大的机队管理平台,但尚未完全成熟。因此,本文展示并验证了RMF在医院环境中的实际部署,并描述了集成工作。