Suppr超能文献

术中图像中脊柱手术器械的数据驱动检测与配准

Data-Driven Detection and Registration of Spine Surgery Instrumentation in Intraoperative Images.

作者信息

Doerr S A, Uneri A, Huang Y, Jones C K, Zhang X, Ketcha M D, Helm P A, Siewerdsen J H

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD.

Department of Computer Science, Johns Hopkins University, Baltimore MD.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Feb;11315. doi: 10.1117/12.2550052. Epub 2020 Mar 16.

Abstract

PURPOSE

Conventional model-based 3D-2D registration algorithms can be challenged by limited capture range, model validity, and stringent intraoperative runtime requirements. In this work, a deep convolutional neural network was used to provide robust initialization of a registration algorithm (known-component registration, KC-Reg) for 3D localization of spine surgery implants, combining the speed and global support of data-driven approaches with the previously demonstrated accuracy of model-based registration.

METHODS

The approach uses a Faster R-CNN architecture to detect and localize a broad variety and orientation of spinal pedicle screws in clinical images. Training data were generated using projections from 17 clinical cone-beam CT scans and a library of screw models to simulate implants. Network output was processed to provide screw count and 2D poses. The network was tested on two test datasets of 2,000 images, each depicting real anatomy and realistic spine surgery instrumentation - one dataset involving the same patient data as in the training set (but with different screws, poses, image noise, and affine transformations) and one dataset with five patients unseen in the test data. Assessment of device detection was quantified in terms of accuracy and specificity, and localization accuracy was evaluated in terms of intersection-over-union (IOU) and distance between true and predicted bounding box coordinates.

RESULTS

The overall accuracy of pedicle screw detection was ~86.6% (85.3% for the same-patient dataset and 87.8% for the many-patient dataset), suggesting that the screw detection network performed reasonably well irrespective of disparate, complex anatomical backgrounds. The precision of screw detection was ~92.6% (95.0% and 90.2% for the respective same-patient and many-patient datasets). The accuracy of screw localization was within 1.5 mm (median difference of bounding box coordinates), and median IOU exceeded 0.85. For purposes of initializing a 3D-2D registration algorithm, the accuracy was observed to be well within the typical capture range of KC-Reg..

CONCLUSIONS

Initial evaluation of network performance indicates sufficient accuracy to integrate with algorithms for implant registration, guidance, and verification in spine surgery. Such capability is of potential use in surgical navigation, robotic assistance, and data-intensive analysis of implant placement in large retrospective datasets. Future work includes correspondence of multiple views, 3D localization, screw classification, and expansion of the training dataset to a broader variety of anatomical sites, number of screws, and types of implants.

摘要

目的

传统的基于模型的3D-2D配准算法可能会受到捕获范围有限、模型有效性以及严格的术中运行时间要求的挑战。在这项工作中,使用了深度卷积神经网络为脊柱手术植入物的3D定位提供配准算法(已知组件配准,KC-Reg)的稳健初始化,将数据驱动方法的速度和全局支持与先前证明的基于模型的配准精度相结合。

方法

该方法使用更快的R-CNN架构在临床图像中检测和定位各种类型和方向的椎弓根螺钉。使用来自17次临床锥形束CT扫描的投影和一个螺钉模型库来生成训练数据,以模拟植入物。对网络输出进行处理以提供螺钉数量和二维姿态。该网络在两个包含2000张图像的测试数据集上进行了测试,每个数据集都描绘了真实的解剖结构和逼真的脊柱手术器械——一个数据集涉及与训练集中相同的患者数据(但螺钉、姿态、图像噪声和仿射变换不同),另一个数据集包含测试数据中未见过的五名患者。根据准确性和特异性对设备检测进行量化评估,并根据交并比(IOU)以及真实和预测边界框坐标之间的距离来评估定位准确性。

结果

椎弓根螺钉检测的总体准确率约为86.6%(同一患者数据集为85.3%,多患者数据集为87.8%),这表明无论解剖背景如何不同和复杂,螺钉检测网络的表现都相当不错。螺钉检测的精度约为92.6%(同一患者和多患者数据集分别为95.0%和90.2%)。螺钉定位的准确性在1.5毫米以内(边界框坐标的中位数差异),中位数IOU超过0.85。为了初始化3D-2D配准算法,观察到其准确性完全在KC-Reg的典型捕获范围内。

结论

网络性能的初步评估表明,其准确性足以与脊柱手术中植入物配准、引导和验证算法集成。这种能力在手术导航、机器人辅助以及大型回顾性数据集中植入物放置的数据密集型分析中具有潜在用途。未来的工作包括多视图对应、3D定位、螺钉分类,以及将训练数据集扩展到更广泛的解剖部位、螺钉数量和植入物类型。

相似文献

5
Robotic-Assisted Pedicle Screw Placement During Spine Surgery.脊柱手术中机器人辅助椎弓根螺钉置入术
JBJS Essent Surg Tech. 2020 May 21;10(2):e0020. doi: 10.2106/JBJS.ST.19.00020. eCollection 2020 Apr-Jun.

本文引用的文献

1
i3PosNet: instrument pose estimation from X-ray in temporal bone surgery.i3PosNet:颞骨手术中 X 射线的器械位姿估计。
Int J Comput Assist Radiol Surg. 2020 Jul;15(7):1137-1145. doi: 10.1007/s11548-020-02157-4. Epub 2020 May 21.
4
Object Detection With Deep Learning: A Review.基于深度学习的目标检测研究综述。
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232. doi: 10.1109/TNNLS.2018.2876865. Epub 2019 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验