Suppr超能文献

基于已知成分的体层摄影术金属伪影减少技术(KC-MAR)。

Known-component metal artifact reduction (KC-MAR) for cone-beam CT.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States of America.

出版信息

Phys Med Biol. 2019 Aug 21;64(16):165021. doi: 10.1088/1361-6560/ab3036.

Abstract

Intraoperative cone-beam CT (CBCT) is increasingly used for surgical navigation and validation of device placement. In spinal deformity correction, CBCT provides visualization of pedicle screws and fixation rods in relation to adjacent anatomy. This work reports and evaluates a method that uses prior information regarding such surgical instrumentation for improved metal artifact reduction (MAR). The known-component MAR (KC-MAR) approach achieves precise localization of instrumentation in projection images using rigid or deformable 3D-2D registration of component models, thereby overcoming residual errors associated with segmentation-based methods. Projection data containing metal components are processed via 2D inpainting of the detector signal, followed by 3D filtered back-projection (FBP). Phantom studies were performed to identify nominal algorithm parameters and quantitatively investigate performance over a range of component material composition and size. A cadaver study emulating screw and rod placement in spinal deformity correction was conducted to evaluate performance under realistic clinical imaging conditions. KC-MAR demonstrated reduction in artifacts (standard deviation in voxel values) across a range of component types and dose levels, reducing the artifact to 5-10 HU. Accurate component delineation was demonstrated for rigid (screw) and deformable (rod) models with sub-mm registration errors, and a single-pixel dilation of the projected components was found to compensate for partial-volume effects. Artifacts associated with spine screws and rods were reduced by 40%-80% in cadaver studies, and the resulting images demonstrated markedly improved visualization of instrumentation (e.g. screw threads) within cortical margins. The KC-MAR algorithm combines knowledge of surgical instrumentation with 3D image reconstruction in a manner that overcomes potential pitfalls of segmentation. The approach is compatible with FBP-thereby maintaining simplicity in a manner that is consistent with surgical workflow-or more sophisticated model-based reconstruction methods that could further improve image quality and/or help reduce radiation dose.

摘要

术中锥形束 CT(CBCT)越来越多地用于手术导航和器械放置验证。在脊柱畸形矫正中,CBCT 提供了与相邻解剖结构相关的椎弓根螺钉和固定棒的可视化。本研究报告并评估了一种使用有关此类手术器械的先验信息来改善金属伪影减少(MAR)的方法。已知成分 MAR(KC-MAR)方法通过对组件模型进行刚性或可变形的 3D-2D 配准,精确地定位投影图像中的器械,从而克服了基于分割的方法相关的残余误差。含有金属部件的投影数据通过探测器信号的 2D 内插处理,然后进行 3D 滤波反投影(FBP)。进行了体模研究以确定标称算法参数,并在一系列组件材料组成和尺寸范围内定量研究性能。进行了尸体研究,模拟脊柱畸形矫正中的螺钉和棒放置,以在现实临床成像条件下评估性能。KC-MAR 证明在各种组件类型和剂量水平下都可以减少伪影(体素值的标准差),将伪影降低到 5-10 HU。对于刚性(螺钉)和可变形(棒)模型,都可以实现亚毫米级别的配准误差下的准确组件描绘,并且发现对投影组件进行单个像素的扩张可以补偿部分容积效应。尸体研究中,脊柱螺钉和棒的伪影减少了 40%-80%,并且所得到的图像明显改善了皮质边界内器械(例如螺钉螺纹)的可视化。KC-MAR 算法以一种克服分割潜在陷阱的方式,将手术器械的知识与 3D 图像重建结合在一起。该方法与 FBP 兼容-以一种与手术工作流程一致的简单方式-或更复杂的基于模型的重建方法,可以进一步提高图像质量和/或有助于降低辐射剂量。

相似文献

1
Known-component metal artifact reduction (KC-MAR) for cone-beam CT.
Phys Med Biol. 2019 Aug 21;64(16):165021. doi: 10.1088/1361-6560/ab3036.
2
C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.
Phys Med Biol. 2020 Aug 19;65(16):165012. doi: 10.1088/1361-6560/ab9454.
4
Frequency split metal artifact reduction (FSMAR) in computed tomography.
Med Phys. 2012 Apr;39(4):1904-16. doi: 10.1118/1.3691902.
8
Single-pass metal artifact reduction using a dual-layer flat panel detector.
Med Phys. 2021 Oct;48(10):6482-6496. doi: 10.1002/mp.15131. Epub 2021 Aug 10.

引用本文的文献

2
Vessel-targeted compensation of deformable motion in interventional cone-beam CT.
Med Image Anal. 2024 Oct;97:103254. doi: 10.1016/j.media.2024.103254. Epub 2024 Jun 26.
3
Deformable motion compensation in interventional cone-beam CT with a context-aware learned autofocus metric.
Med Phys. 2024 Jun;51(6):4158-4180. doi: 10.1002/mp.17125. Epub 2024 May 11.
4
A kV-MV approach to CBCT metal artifact reduction using multi-layer MV-CBCT.
Phys Med Biol. 2024 Mar 14;69(7). doi: 10.1088/1361-6560/ad1cfb.
5
Reproducibility and location-stability of radiomic features derived from cone-beam computed tomography: a phantom study.
Dentomaxillofac Radiol. 2023 Nov;52(8):20230180. doi: 10.1259/dmfr.20230180. Epub 2023 Oct 23.
6
Generating missing patient anatomy from partially acquired cone-beam computed tomography images using deep learning: a proof of concept.
Phys Eng Sci Med. 2023 Sep;46(3):1321-1330. doi: 10.1007/s13246-023-01302-y. Epub 2023 Jul 18.
7
Data-Driven Detection and Registration of Spine Surgery Instrumentation in Intraoperative Images.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11315. doi: 10.1117/12.2550052. Epub 2020 Mar 16.
10
Sinogram + image domain neural network approach for metal artifact reduction in low-dose cone-beam computed tomography.
J Med Imaging (Bellingham). 2021 Sep;8(5):052103. doi: 10.1117/1.JMI.8.5.052103. Epub 2021 Mar 13.

本文引用的文献

1
Deformable 3D-2D Registration of Known Components for Image Guidance in Spine Surgery.
Med Image Comput Comput Assist Interv. 2016 Oct;9902:124-132. doi: 10.1007/978-3-319-46726-9_15. Epub 2016 Oct 2.
4
Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.
5
A deep learning framework for segmentation and pose estimation of pedicle screw implants based on C-arm fluoroscopy.
Int J Comput Assist Radiol Surg. 2018 Aug;13(8):1269-1282. doi: 10.1007/s11548-018-1776-9. Epub 2018 May 28.
7
Intraoperative evaluation of device placement in spine surgery using known-component 3D-2D image registration.
Phys Med Biol. 2017 Apr 21;62(8):3330-3351. doi: 10.1088/1361-6560/aa62c5. Epub 2017 Feb 24.
8
Polyenergetic known-component CT reconstruction with unknown material compositions and unknown x-ray spectra.
Phys Med Biol. 2017 Apr 21;62(8):3352-3374. doi: 10.1088/1361-6560/aa6285. Epub 2017 Feb 23.
10
Known-component 3D-2D registration for quality assurance of spine surgery pedicle screw placement.
Phys Med Biol. 2015 Oct 21;60(20):8007-24. doi: 10.1088/0031-9155/60/20/8007. Epub 2015 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验