Suppr超能文献

用于神经电极放置的高精度引导和验证的可变形 3D-2D 配准。

Deformable 3D-2D registration for high-precision guidance and verification of neuroelectrode placement.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States of America.

Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, United States of America.

出版信息

Phys Med Biol. 2021 Nov 1;66(21). doi: 10.1088/1361-6560/ac2f89.

Abstract

Accurate neuroelectrode placement is essential to effective monitoring or stimulation of neurosurgery targets. This work presents and evaluates a method that combines deep learning and model-based deformable 3D-2D registration to guide and verify neuroelectrode placement using intraoperative imaging.The registration method consists of three stages: (1) detection of neuroelectrodes in a pair of fluoroscopy images using a deep learning approach; (2) determination of correspondence and initial 3D localization among neuroelectrode detections in the two projection images; and (3) deformable 3D-2D registration of neuroelectrodes according to a physical device model. The method was evaluated in phantom, cadaver, and clinical studies in terms of (a) the accuracy of neuroelectrode registration and (b) the quality of metal artifact reduction (MAR) in cone-beam CT (CBCT) in which the deformably registered neuroelectrode models are taken as input to the MAR.The combined deep learning and model-based deformable 3D-2D registration approach achieved 0.2 ± 0.1 mm accuracy in cadaver studies and 0.6 ± 0.3 mm accuracy in clinical studies. The detection network and 3D correspondence provided initialization of 3D-2D registration within 2 mm, which facilitated end-to-end registration runtime within 10 s. Metal artifacts, quantified as the standard deviation in voxel values in tissue adjacent to neuroelectrodes, were reduced by 72% in phantom studies and by 60% in first clinical studies.The method combines the speed and generalizability of deep learning (for initialization) with the precision and reliability of physical model-based registration to achieve accurate deformable 3D-2D registration and MAR in functional neurosurgery. Accurate 3D-2D guidance from fluoroscopy could overcome limitations associated with deformation in conventional navigation, and improved MAR could improve CBCT verification of neuroelectrode placement.

摘要

准确的神经电极定位对于神经外科目标的有效监测或刺激至关重要。本研究提出并评估了一种结合深度学习和基于模型的可变形 3D-2D 配准的方法,以指导和验证术中成像引导的神经电极放置。该配准方法包括三个阶段:(1)使用深度学习方法在一对透视图像中检测神经电极;(2)确定两幅投影图像中神经电极检测之间的对应关系和初始 3D 定位;(3)根据物理设备模型对神经电极进行可变形 3D-2D 配准。该方法在体模、尸体和临床研究中进行了评估,评估指标为:(a)神经电极配准的准确性;(b)在锥形束 CT(CBCT)中使用可变形注册的神经电极模型作为输入进行金属伪影减少(MAR)的质量,其中包括金属伪影减少的质量。组合的深度学习和基于模型的可变形 3D-2D 配准方法在尸体研究中达到了 0.2±0.1 毫米的精度,在临床研究中达到了 0.6±0.3 毫米的精度。检测网络和 3D 对应关系在 2 毫米内为 3D-2D 配准提供了初始化,这使得端到端配准的运行时间在 10 秒内。在体模研究中,金属伪影减少了 72%,在首次临床研究中减少了 60%,金属伪影的量化为神经电极附近组织中体素值的标准差。该方法将深度学习的速度和通用性(用于初始化)与物理模型的精确性和可靠性相结合,实现了功能神经外科中精确的可变形 3D-2D 配准和 MAR。从透视术中获得的准确 3D-2D 引导可以克服传统导航中变形相关的局限性,而改进的 MAR 可以提高 CBCT 对神经电极放置的验证。

相似文献

本文引用的文献

1
Deformable 3D-2D Registration of Known Components for Image Guidance in Spine Surgery.用于脊柱手术图像引导的已知组件的可变形3D-2D配准
Med Image Comput Comput Assist Interv. 2016 Oct;9902:124-132. doi: 10.1007/978-3-319-46726-9_15. Epub 2016 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验