Suppr超能文献

通过多重复制加速分子动力学模拟和自由能景观解析 SARS-CoV-2 主蛋白酶抑制剂的结合机制。

Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes.

机构信息

School of Physics and Electronics, Shandong Normal University, Jinan, China, 250358.

School of Science, Shandong Jiaotong University, Jinan, China, 250357.

出版信息

Phys Chem Chem Phys. 2022 Sep 21;24(36):22129-22143. doi: 10.1039/d2cp03446h.

Abstract

The pneumonia outbreak caused by the SARS-CoV-2 virus poses a serious threat to human health and the world economy. The development of safe and highly effective antiviral drugs is of great significance for the treatment of COVID-19. The main protease (M) of SARS-CoV-2 is a key enzyme for viral replication and transcription and has no homolog in humans. Therefore, the M is an ideal target for the design of drugs against COVID-19. Insights into the inhibitor-M binding mechanism and conformational changes of the M are essential for the design of potent drugs that target the M. In this study, we analyzed the conformational changes of the M that are induced by the binding of three inhibitors, YTV, YSP and YU4, using multiple replica accelerated molecular dynamics (MR-aMD) simulations, dynamic cross-correlation map (DCCM) calculations, principal component analysis (PCA), and free energy landscape (FEL) analysis. The results from DCCM calculations and PCA show that the binding of inhibitors significantly affects the kinetic behavior of the M and induces a conformational rearrangement of the M. The binding ability and binding mechanism of YTV, YSP and YU4 to the M were investigated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The results indicate that substitution of the -butanol group by methylbenzene and trifluoromethyl groups enhances the binding ability of YSP and YU4 to the M compared with YTV; moreover, massive hydrophobic interactions are detected between the inhibitors and the M. Meanwhile, T25, L27, H41, M49, N142, G143, C145, M165, E166 and Q189 are identified as the key residues for inhibitor-M interactions using residue-based free energy decomposition calculations, which can be employed as efficient targets in the design of drugs that inhibit the activity of the M.

摘要

新型冠状病毒引起的肺炎疫情对人类健康和世界经济构成严重威胁。开发安全、高效的抗病毒药物对于治疗 COVID-19 具有重要意义。新型冠状病毒的主要蛋白酶(M)是病毒复制和转录的关键酶,在人类中没有同源物。因此,M 是设计针对 COVID-19 的药物的理想靶点。深入了解抑制剂-M 结合机制和 M 的构象变化对于设计针对 M 的强效药物至关重要。在这项研究中,我们使用多副本加速分子动力学(MR-aMD)模拟、动态互相关图(DCCM)计算、主成分分析(PCA)和自由能景观(FEL)分析,分析了三种抑制剂 YTV、YSP 和 YU4 结合诱导的 M 构象变化。DCCM 计算和 PCA 的结果表明,抑制剂的结合显著影响 M 的动力学行为,并诱导 M 的构象重排。使用分子力学泊松-玻尔兹曼表面面积(MM-PBSA)方法研究了 YTV、YSP 和 YU4 与 M 的结合能力和结合机制。结果表明,用甲基苯和三氟甲基取代 -丁醇基团可增强 YSP 和 YU4 与 M 的结合能力,与 YTV 相比;此外,还检测到抑制剂与 M 之间存在大量的疏水相互作用。同时,使用基于残基的自由能分解计算鉴定出 T25、L27、H41、M49、N142、G143、C145、M165、E166 和 Q189 是抑制剂-M 相互作用的关键残基,可作为抑制 M 活性的药物设计的有效靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验