Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India.
Curr Protein Pept Sci. 2022;23(9):574-584. doi: 10.2174/1389203723666220907110310.
The major drawbacks of biofuel production at the commercial level are its low yield, nonavailability of feedstock, feedback inhibition, presence of inhibitory pathways in various organisms, and biofuel intolerance of organisms. The present review focuses on the implications of the CRISPRCas9 mediated gene editing tool to alter the genome of bacteria, algae, fungi, and higher plants for efficient biofuel production. Gene knockout and gene cassette insertions employing CRISPR-Cas9 in Saccharomyces cerevisiae and Kluyveromyces marxianus have resulted in enhanced production of bioethanol and 2-Phenyl ethanol in these organisms, respectively. Genomes of several bacterial strains were also modified to enhance ethanol and butanol production in them. CRISPR-Cas9 modification of microalgae has demonstrated improved total lipid content, a prerequisite for biofuel production. All over, CRISPR-Cas9 has emerged as a tool of choice for engineering the genome and metabolic pathways of organisms for producing industrial biofuel. In plant-based biofuel production, the biosynthetic pathways of lignin interfere with the satisfactory release of fermentable sugars thus hampering efficient biofuel production. CRISPR-Cas9 has shown a promising role in reducing lignin content in various plants including barley, switchgrass, and rice straw.
生物燃料在商业水平上生产的主要缺点是产量低、原料不可用、反馈抑制、各种生物体中存在抑制途径以及生物体对生物燃料的耐受性差。本综述重点介绍了 CRISPRCas9 介导的基因编辑工具对细菌、藻类、真菌和高等植物基因组进行修饰以提高生物燃料生产效率的意义。在酿酒酵母和马克斯克鲁维酵母中使用 CRISPR-Cas9 进行基因敲除和基因盒插入,分别导致这些生物体中生物乙醇和 2-苯乙醇的产量提高。还对几种细菌菌株的基因组进行了修饰,以提高它们的乙醇和丁醇产量。CRISPR-Cas9 对微藻的修饰证明了总脂质含量的提高,这是生物燃料生产的前提。总之,CRISPR-Cas9 已成为工程生物基因组和代谢途径以生产工业生物燃料的首选工具。在基于植物的生物燃料生产中,木质素的生物合成途径会干扰可发酵糖的满意释放,从而阻碍有效的生物燃料生产。CRISPR-Cas9 在降低包括大麦、柳枝稷和水稻秸秆在内的各种植物中的木质素含量方面显示出有希望的作用。