文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的方法,用于自动识别注释单细胞 RNA-seq 数据中的新型细胞。

A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

出版信息

Bioinformatics. 2022 Oct 31;38(21):4885-4892. doi: 10.1093/bioinformatics/btac617.


DOI:10.1093/bioinformatics/btac617
PMID:36083008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9801963/
Abstract

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) has been widely used to decompose complex tissues into functionally distinct cell types. The first and usually the most important step of scRNA-seq data analysis is to accurately annotate the cell labels. In recent years, many supervised annotation methods have been developed and shown to be more convenient and accurate than unsupervised cell clustering. One challenge faced by all the supervised annotation methods is the identification of the novel cell type, which is defined as the cell type that is not present in the training data, only exists in the testing data. Existing methods usually label the cells simply based on the correlation coefficients or confidence scores, which sometimes results in an excessive number of unlabeled cells. RESULTS: We developed a straightforward yet effective method combining autoencoder with iterative feature selection to automatically identify novel cells from scRNA-seq data. Our method trains an autoencoder with the labeled training data and applies the autoencoder to the testing data to obtain reconstruction errors. By iteratively selecting features that demonstrate a bi-modal pattern and reclustering the cells using the selected feature, our method can accurately identify novel cells that are not present in the training data. We further combined this approach with a support vector machine to provide a complete solution for annotating the full range of cell types. Extensive numerical experiments using five real scRNA-seq datasets demonstrated favorable performance of the proposed method over existing methods serving similar purposes. AVAILABILITY AND IMPLEMENTATION: Our R software package CAMLU is publicly available through the Zenodo repository (https://doi.org/10.5281/zenodo.7054422) or GitHub repository (https://github.com/ziyili20/CAMLU). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:单细胞 RNA 测序(scRNA-seq)已被广泛用于将复杂组织分解为具有不同功能的细胞类型。scRNA-seq 数据分析的第一步,也是通常最重要的一步,是准确注释细胞标签。近年来,已经开发出许多有监督的注释方法,并且被证明比无监督的细胞聚类更加方便和准确。所有有监督的注释方法都面临的一个挑战是识别新的细胞类型,这是指在训练数据中不存在,仅存在于测试数据中的细胞类型。现有的方法通常只是基于相关系数或置信分数来标记细胞,这有时会导致大量未标记的细胞。

结果:我们开发了一种简单而有效的方法,将自动编码器与迭代特征选择相结合,从 scRNA-seq 数据中自动识别新的细胞。我们的方法使用标记的训练数据训练自动编码器,并将自动编码器应用于测试数据以获得重构误差。通过迭代选择表现出双峰模式的特征,并使用所选特征重新聚类细胞,我们的方法可以准确识别不在训练数据中的新细胞。我们进一步将这种方法与支持向量机结合,为注释全范围的细胞类型提供了一个完整的解决方案。使用五个真实的 scRNA-seq 数据集进行的广泛数值实验表明,与具有相似用途的现有方法相比,所提出的方法具有更好的性能。

可用性和实现:我们的 R 软件包 CAMLU 可通过 Zenodo 存储库(https://doi.org/10.5281/zenodo.7054422)或 GitHub 存储库(https://github.com/ziyili20/CAMLU)公开使用。

补充信息:补充数据可在生物信息学在线获得。

相似文献

[1]
A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.

Bioinformatics. 2022-10-31

[2]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[3]
A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data.

Sci Rep. 2022-1-18

[4]
scCNC: a method based on capsule network for clustering scRNA-seq data.

Bioinformatics. 2022-8-2

[5]
Vaeda computationally annotates doublets in single-cell RNA sequencing data.

Bioinformatics. 2023-1-1

[6]
Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.

Brief Bioinform. 2022-3-10

[7]
SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data.

Brief Bioinform. 2024-1-22

[8]
CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data.

Bioinformatics. 2024-2-1

[9]
Continually adapting pre-trained language model to universal annotation of single-cell RNA-seq data.

Brief Bioinform. 2024-1-22

[10]
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.

Bioinformatics. 2023-3-1

引用本文的文献

[1]
An overview of computational methods in single-cell transcriptomic cell type annotation.

Brief Bioinform. 2025-5-1

[2]
Mapping Cell Identity from scRNA-seq: A primer on computational methods.

Comput Struct Biotechnol J. 2025-4-2

[3]
scCTS: identifying the cell type-specific marker genes from population-level single-cell RNA-seq.

Genome Biol. 2024-10-14

[4]
Detecting anomalous anatomic regions in spatial transcriptomics with STANDS.

Nat Commun. 2024-9-19

[5]
Inferring Novel Cells in Single-Cell RNA-Sequencing Data.

Methods Mol Biol. 2024

[6]
CASi: A framework for cross-timepoint analysis of single-cell RNA sequencing data.

Sci Rep. 2024-5-9

本文引用的文献

[1]
Evaluation of some aspects in supervised cell type identification for single-cell RNA-seq: classifier, feature selection, and reference construction.

Genome Biol. 2021-9-9

[2]
A single-cell and spatially resolved atlas of human breast cancers.

Nat Genet. 2021-9

[3]
Mapping single-cell data to reference atlases by transfer learning.

Nat Biotechnol. 2022-1

[4]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

[5]
Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods.

Nat Protoc. 2021-6

[6]
Inference and analysis of cell-cell communication using CellChat.

Nat Commun. 2021-2-17

[7]
Fast and precise single-cell data analysis using a hierarchical autoencoder.

Nat Commun. 2021-2-15

[8]
Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes.

Nat Biotechnol. 2021-5

[9]
Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity.

Nat Genet. 2020-10-30

[10]
Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons.

Am J Physiol Cell Physiol. 2020-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索