Gholamipourbarogh Negin, Prochnow Astrid, Frings Christian, Münchau Alexander, Mückschel Moritz, Beste Christian
Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany.
Psychophysiology. 2023 Feb;60(2):e14178. doi: 10.1111/psyp.14178. Epub 2022 Sep 9.
The integration of perception and action has long been studied in psychological science using overarching cognitive frameworks. Despite these being very successful in explaining perception-action integration, little is known about its neurophysiological and especially the functional neuroanatomical foundations. It is unknown whether distinct brain structures are simultaneously involved in the processing of perception-action integration codes and also to what extent demands on perception-action integration modulate activities in these structures. We investigate these questions in an EEG study integrating temporal and ICA-based EEG signal decomposition with source localization. For this purpose, we used data from 32 healthy participants who performed a 'TEC Go/Nogo' task. We show that the EEG signal can be decomposed into components carrying different informational aspects or processing codes relevant for perception-action integration. Importantly, these specific codes are processed independently in different brain structures, and their specific roles during the processing of perception-action integration differ. Some regions (i.e., the anterior cingulate and insular cortex) take a 'default role' because these are not modulated in their activity by demands or the complexity of event file coding processes. In contrast, regions in the motor cortex, middle frontal, temporal, and superior parietal cortices were not activated by 'default' but revealed modulations depending on the complexity of perception-action integration (i.e., whether an event file has to be reconfigured). Perception-action integration thus reflects a multi-region processing of specific fractions of information in the neurophysiological signal. This needs to be taken into account when further developing a cognitive science framework detailing perception-action integration.
长期以来,心理学一直使用总体认知框架来研究感知与行动的整合。尽管这些框架在解释感知 - 行动整合方面非常成功,但对于其神经生理学基础,尤其是功能性神经解剖学基础却知之甚少。目前尚不清楚不同的脑结构是否同时参与感知 - 行动整合代码的处理,以及感知 - 行动整合的需求在多大程度上调节这些结构中的活动。我们在一项将基于时间和独立成分分析(ICA)的脑电图(EEG)信号分解与源定位相结合的EEG研究中探讨了这些问题。为此,我们使用了32名健康参与者执行 “TEC Go / Nogo” 任务的数据。我们表明,EEG信号可以分解为携带与感知 - 行动整合相关的不同信息方面或处理代码的成分。重要的是,这些特定代码在不同的脑结构中独立处理,并且它们在感知 - 行动整合处理过程中的特定作用有所不同。一些区域(即前扣带回和岛叶皮质)发挥 “默认作用”,因为这些区域的活动不会因事件文件编码过程的需求或复杂性而受到调节。相比之下,运动皮层、额中回、颞叶和顶上叶皮质的区域并非 “默认” 激活,而是根据感知 - 行动整合的复杂性(即是否需要重新配置事件文件)显示出调节作用。因此,感知 - 行动整合反映了神经生理信号中特定信息部分的多区域处理。在进一步发展详细描述感知 - 行动整合的认知科学框架时,需要考虑到这一点。