Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
Hum Brain Mapp. 2024 Apr 15;45(6):e26643. doi: 10.1002/hbm.26643.
Coping with distracting inputs during goal-directed behavior is a common challenge, especially when stopping ongoing responses. The neural basis for this remains debated. Our study explores this using a conflict-modulation Stop Signal task, integrating group independent component analysis (group-ICA), multivariate pattern analysis (MVPA), and EEG source localization analysis. Consistent with previous findings, we show that stopping performance is better in congruent (nonconflicting) trials than in incongruent (conflicting) trials. Conflict effects in incongruent trials compromise stopping more due to the need for the reconfiguration of stimulus-response (S-R) mappings. These cognitive dynamics are reflected by four independent neural activity patterns (ICA), each coding representational content (MVPA). It is shown that each component was equally important in predicting behavioral outcomes. The data support an emerging idea that perception-action integration in action-stopping involves multiple independent neural activity patterns. One pattern relates to the precuneus (BA 7) and is involved in attention and early S-R processes. Of note, three other independent neural activity patterns were associated with the insular cortex (BA13) in distinct time windows. These patterns reflect a role in early attentional selection but also show the reiterated processing of representational content relevant for stopping in different S-R mapping contexts. Moreover, the insular cortex's role in automatic versus complex response selection in relation to stopping processes is shown. Overall, the insular cortex is depicted as a brain hub, crucial for response selection and cancellation across both straightforward (automatic) and complex (conditional) S-R mappings, providing a neural basis for general cognitive accounts on action control.
在目标导向行为中应对分心输入是一个常见的挑战,尤其是在停止正在进行的反应时。其神经基础仍存在争议。我们的研究使用冲突调节停止信号任务,整合组独立成分分析(group-ICA)、多变量模式分析(MVPA)和 EEG 源定位分析来探索这一点。与先前的发现一致,我们表明在一致(非冲突)试验中停止性能优于在不一致(冲突)试验中。在不一致试验中,冲突效应会因需要重新配置刺激-反应(S-R)映射而更严重地影响停止。这些认知动态由四个独立的神经活动模式(ICA)反映,每个模式都编码表示内容(MVPA)。结果表明,每个成分在预测行为结果方面都同等重要。数据支持了一个新兴的观点,即在动作停止中感知-动作整合涉及多个独立的神经活动模式。一个模式与后扣带回(BA7)有关,涉及注意力和早期 S-R 过程。值得注意的是,其他三个独立的神经活动模式与岛叶皮层(BA13)在不同的时间窗口有关。这些模式反映了早期注意选择中的作用,但也显示了在不同的 S-R 映射环境中停止相关表示内容的反复处理。此外,还显示了岛叶皮层在自动与复杂反应选择中与停止过程的关系。总体而言,岛叶皮层被描绘为一个大脑枢纽,对于简单(自动)和复杂(条件)S-R 映射中的反应选择和取消都至关重要,为一般认知的动作控制提供了神经基础。