Suppr超能文献

肌干细胞支持小组:肌肉再生中的协调细胞反应。

A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration.

机构信息

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA.

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.

出版信息

Dev Cell. 2018 Jul 16;46(2):135-143. doi: 10.1016/j.devcel.2018.06.018.

Abstract

Skeletal muscle has an extraordinary regenerative capacity due to the activity of tissue-specific muscle stem cells. Consequently, these cells have received the most attention in studies investigating the cellular processes of skeletal muscle regeneration. However, efficient capacity to rebuild this tissue also depends on additional cells in the local milieu, as disrupting their normal contributions often leads to incomplete regeneration. Here, we review these additional cells that contribute to the regenerative process. Understanding the complex interactions between and among these cell populations has the potential to lead to therapies that will help promote normal skeletal muscle regeneration under conditions in which this process is suboptimal.

摘要

骨骼肌具有非凡的再生能力,这要归功于组织特异性肌肉干细胞的活性。因此,在研究骨骼肌再生的细胞过程中,这些细胞受到了最多的关注。然而,有效地重建这种组织还依赖于局部环境中的其他细胞,因为破坏它们的正常贡献常常导致不完全再生。在这里,我们回顾了这些有助于再生过程的其他细胞。了解这些细胞群体之间以及相互之间的复杂相互作用,有可能导致治疗方法的出现,以帮助促进在这个过程不理想的情况下正常的骨骼肌再生。

相似文献

1
A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration.
Dev Cell. 2018 Jul 16;46(2):135-143. doi: 10.1016/j.devcel.2018.06.018.
2
Biomaterial and stem cell-based strategies for skeletal muscle regeneration.
J Orthop Res. 2019 Jun;37(6):1246-1262. doi: 10.1002/jor.24212. Epub 2019 Feb 14.
3
Muscle stem cells in development, regeneration, and disease.
Genes Dev. 2006 Jul 1;20(13):1692-708. doi: 10.1101/gad.1419406.
4
Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?
FEBS J. 2013 Sep;280(17):4100-8. doi: 10.1111/febs.12370. Epub 2013 Jun 24.
5
Satellite cells: the architects of skeletal muscle.
Curr Top Dev Biol. 2014;107:161-81. doi: 10.1016/B978-0-12-416022-4.00006-8.
6
Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation.
Mol Cell Biol. 2019 Apr 2;39(8). doi: 10.1128/MCB.00447-18. Print 2019 Apr 15.
7
Regulation and phylogeny of skeletal muscle regeneration.
Dev Biol. 2018 Jan 15;433(2):200-209. doi: 10.1016/j.ydbio.2017.07.026. Epub 2017 Aug 12.
8
Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease.
Nat Rev Mol Cell Biol. 2016 May;17(5):267-79. doi: 10.1038/nrm.2016.7. Epub 2016 Mar 9.
9
Cell and molecular mechanisms of regeneration and reorganization of skeletal muscles.
Ortop Traumatol Rehabil. 2012 Jan-Feb;14(1):1-11. doi: 10.5604/15093492.976893.

引用本文的文献

1
FAP-CAR-T cells reduce dystrophic muscle fibrosis, improving adeno-associated virus gene transfer efficacy.
Mol Ther Methods Clin Dev. 2025 Jul 30;33(3):101545. doi: 10.1016/j.omtm.2025.101545. eCollection 2025 Sep 11.
2
+ fibroadipogenic progenitors in muscle are crucial for bone fracture repair.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2417806122. doi: 10.1073/pnas.2417806122. Epub 2025 Jul 29.
3
Ablation of UCP-1+ cells impacts FAP dynamics in muscle regeneration.
Am J Physiol Cell Physiol. 2025 Sep 1;329(3):C754-C767. doi: 10.1152/ajpcell.00249.2025. Epub 2025 Jul 28.
4
A Self-Renewing Biomimetic Skeletal Muscle Construct Engineered using Induced Myogenic Progenitor Cells.
Adv Funct Mater. 2023 Sep 27;34(1). doi: 10.1002/adfm.202300571. eCollection 2024 Jan.
5
Estrogen rescues muscle regeneration impaired by DUX4 in a humanized xenograft mouse model.
Cell Death Dis. 2025 Jul 9;16(1):508. doi: 10.1038/s41419-025-07827-2.
8
Muscle Stem Cell Microenvironment and Functions in Muscle Regeneration.
Biomolecules. 2025 May 26;15(6):765. doi: 10.3390/biom15060765.

本文引用的文献

1
Skeletal muscle regeneration is modulated by inflammation.
J Orthop Translat. 2018 Feb 7;13:25-32. doi: 10.1016/j.jot.2018.01.002. eCollection 2018 Apr.
2
The roles of muscle stem cells in muscle injury, atrophy and hypertrophy.
J Biochem. 2018 May 1;163(5):353-358. doi: 10.1093/jb/mvy019.
3
Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages.
Stem Cell Reports. 2017 Dec 12;9(6):2018-2033. doi: 10.1016/j.stemcr.2017.10.027. Epub 2017 Nov 30.
4
Macrophage-released ADAMTS1 promotes muscle stem cell activation.
Nat Commun. 2017 Sep 22;8(1):669. doi: 10.1038/s41467-017-00522-7.
5
Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration.
FEBS Lett. 2017 Oct;591(19):3007-3021. doi: 10.1002/1873-3468.12703. Epub 2017 Jun 17.
6
Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury.
Front Physiol. 2017 Apr 3;8:194. doi: 10.3389/fphys.2017.00194. eCollection 2017.
7
A Twist2-dependent progenitor cell contributes to adult skeletal muscle.
Nat Cell Biol. 2017 Mar;19(3):202-213. doi: 10.1038/ncb3477. Epub 2017 Feb 20.
8
CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E506-E513. doi: 10.1073/pnas.1620059114. Epub 2017 Jan 10.
9
Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration.
Cell Biol Int. 2017 Mar;41(3):228-238. doi: 10.1002/cbin.10705. Epub 2017 Jan 18.
10
Macrophage PPARγ, a Lipid Activated Transcription Factor Controls the Growth Factor GDF3 and Skeletal Muscle Regeneration.
Immunity. 2016 Nov 15;45(5):1038-1051. doi: 10.1016/j.immuni.2016.10.016. Epub 2016 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验