Suppr超能文献

利用机器学习从慢性鼻-鼻窦炎和健康受试者中挖掘鼻咽癌,采用常规医疗检测手段。

Uncovering nasopharyngeal carcinoma from chronic rhinosinusitis and healthy subjects using routine medical tests via machine learning.

机构信息

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, Guangdong, China.

Dept. of Statistics, Chinese University of Hong Kong, Guangzhou, Hong Kong SAR, China.

出版信息

PLoS One. 2022 Sep 9;17(9):e0274263. doi: 10.1371/journal.pone.0274263. eCollection 2022.

Abstract

Nasopharyngeal carcinoma (NPC) is one of the most common types of cancers in South China and Southeast Asia. Clinical data has shown that early detection is essential for improving treatment effectiveness and survival rate. Unfortunately, because the early symptoms of NPC are rather minor and similar to that of diseases such as Chronic Rhinosinusitis (CRS), early detection is a challenge. This paper proposes using machine learning methods to detect NPC using routine medical test data, namely Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN), k-Nearest-Neighbor (KNN) and Logistic Regression (LR). We collected a dataset containing 523 newly diagnosed NPC patients before treatment, 501 newly diagnosed CRS patients before treatment as well as 600 healthy controls. The routine medical test data including age, gender, blood test features, liver function test features, and urine sediment test features. For comparison, we also used data from Epstein-Barr Virus (EBV) antibody tests, which is a specialized test not included among routine medical tests. In our first test, all four methods were tested on classifying NPC vs CRS vs controls; RF gives the best overall performance. Using only routine medical test data, it gives an accuracy of 83.1%, outperforming LR by 12%. In our second test, using only routine medical test data, when classifying NPC vs non-NPC (i.e. CRS or controls), RF achieves an accuracy of 88.2%. In our third test, when classifying NPC vs. controls, RF using only routine test data achieves an accuracy significantly better than RF using only EBV antibody data. Finally, in our last test, RF trained with NPC vs controls, using routine test data only, continued to perform well on an entirely separate dataset. This is a promising result because preliminary NPC detection using routine medical data is easy and inexpensive to implement. We believe this approach will play an important role in the detection and treatment of NPC in the future.

摘要

鼻咽癌(NPC)是华南和东南亚地区最常见的癌症类型之一。临床数据表明,早期检测对于提高治疗效果和生存率至关重要。不幸的是,由于 NPC 的早期症状较轻,与慢性鼻-鼻窦炎(CRS)等疾病的症状相似,因此早期检测具有挑战性。本文提出使用机器学习方法,使用常规医疗测试数据来检测 NPC,包括随机森林(RF)、支持向量机(SVM)、人工神经网络(ANN)、k-最近邻(KNN)和逻辑回归(LR)。我们收集了一个包含 523 名未经治疗的新诊断 NPC 患者、501 名未经治疗的新诊断 CRS 患者和 600 名健康对照者的数据集。常规医疗测试数据包括年龄、性别、血液测试特征、肝功能测试特征和尿液沉淀物测试特征。为了进行比较,我们还使用了 Epstein-Barr 病毒(EBV)抗体检测数据,这是一种常规医疗测试中不包含的专门检测。在我们的第一次测试中,所有四种方法都用于将 NPC 与 CRS 与对照组进行分类;RF 给出了最佳的整体性能。仅使用常规医疗测试数据,它的准确率为 83.1%,比 LR 高出 12%。在我们的第二次测试中,仅使用常规医疗测试数据,当将 NPC 与非 NPC(即 CRS 或对照组)进行分类时,RF 的准确率达到 88.2%。在我们的第三次测试中,当将 NPC 与对照组进行分类时,RF 仅使用常规测试数据的准确率明显优于仅使用 EBV 抗体数据的 RF。最后,在我们的最后一次测试中,RF 仅使用 NPC 与对照组的常规测试数据进行训练,在另一个完全独立的数据集上继续表现良好。这是一个很有前途的结果,因为使用常规医疗数据进行初步 NPC 检测既简单又便宜。我们相信,这种方法将在未来 NPC 的检测和治疗中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/9462828/3e349917fbd3/pone.0274263.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验