Suppr超能文献

用于帕金森病诊断的可穿戴传感器与人工智能

Wearable Sensors and Artificial Intelligence for the Diagnosis of Parkinson's Disease.

作者信息

Benyoucef Yacine, Melliti Islem, Harmouch Jouhayna, Asadi Borhan, Del Mastro Antonio, Lapuente-Hernández Diego, Herrero Pablo

机构信息

SPACEMEDEX, 930 Rte des Dolines, Valbonne Sophia-Antipolis, 06560 Valbonne, France.

Department of Physiatry and Nursing, Faculty of Health Sciences, University of Zaragoza, 50009 Zaragoza, Spain.

出版信息

J Clin Med. 2025 Jun 13;14(12):4207. doi: 10.3390/jcm14124207.

Abstract

This study explores the integration of wearable sensors and artificial intelligence (AI) for Human Activity Recognition (HAR) in the diagnosis and rehabilitation of Parkinson's disease (PD). The objective was to develop a proof-of-concept model based on internal reproducibility, without external generalization, that is capable of distinguishing pathological movements from healthy ones while ensuring clinical relevance and patient safety. : Nine subjects, including eight patients with Parkinson's disease and one healthy control, were included. Motion data were collected using the Motigravity platform, which integrates inertial sensors in a controlled environment. The signals were automatically segmented into fixed-length windows, with poor-quality segments excluded through preprocessing. A hybrid CNN-LSTM (Convolutional Neural Networks-Long Short-Term Memory) model was trained to classify motion patterns, leveraging convolutional layers for spatial feature extraction and LSTM layers for temporal dependencies. The Motigravity system provided a controlled hypogravity environment for data collection and rehabilitation exercises. : The proposed CNN-LSTM model achieved a validation accuracy of 100%, demonstrating classification potential. The Motigravity system contributed to improved data reliability and ensured patient safety. Despite increasing class imbalance in extended experiments, the model consistently maintained perfect accuracy, suggesting strong generalizability after external validation to overcome the limitations. : Integrating AI and wearable sensors has significant potential to improve the HAR-based classification of movement impairments and guide rehabilitation strategies in PD. While challenges such as dataset size remain, expanding real-world validation and enhancing automated segmentation could further improve clinical impact. Future research should explore larger cohorts, extend the model to other neurodegenerative diseases, and evaluate its integration into clinical rehabilitation workflows.

摘要

本研究探索了可穿戴传感器与人工智能(AI)在帕金森病(PD)诊断和康复中的人类活动识别(HAR)整合应用。目的是开发一个基于内部可重复性而非外部泛化性的概念验证模型,该模型能够在确保临床相关性和患者安全的同时,区分病理性运动和健康运动。研究纳入了9名受试者,包括8名帕金森病患者和1名健康对照。使用Motigravity平台收集运动数据,该平台在受控环境中集成了惯性传感器。信号被自动分割成固定长度的窗口,并通过预处理排除质量较差的片段。训练了一个混合的卷积神经网络-长短期记忆(CNN-LSTM)模型来对运动模式进行分类,利用卷积层进行空间特征提取,利用LSTM层处理时间依赖性。Motigravity系统为数据收集和康复训练提供了一个受控的微重力环境。所提出的CNN-LSTM模型实现了100%的验证准确率,展示了分类潜力。Motigravity系统有助于提高数据可靠性并确保患者安全。尽管在扩展实验中类别不平衡增加,但该模型始终保持完美的准确率,表明经过外部验证克服局限性后具有很强的泛化性。将AI与可穿戴传感器相结合,在改善基于HAR的运动障碍分类和指导PD康复策略方面具有巨大潜力。虽然存在数据集大小等挑战,但扩大现实世界验证和增强自动分割可以进一步提高临床影响。未来的研究应探索更大的队列,将该模型扩展到其他神经退行性疾病,并评估其融入临床康复工作流程的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验