Suppr超能文献

基于卷积神经网络的改进型人体活动识别技术。

An improved human activity recognition technique based on convolutional neural network.

机构信息

Faculty of Computer Science, Electronics, and Telecommunications, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059, Krakow, Poland.

出版信息

Sci Rep. 2023 Dec 19;13(1):22581. doi: 10.1038/s41598-023-49739-1.

Abstract

A convolutional neural network (CNN) is an important and widely utilized part of the artificial neural network (ANN) for computer vision, mostly used in the pattern recognition system. The most important applications of CNN are medical image analysis, image classification, object recognition from videos, recommender systems, financial time series analysis, natural language processing, and human-computer interfaces. However, after the technological advancement in the power of computing ability and the emergence of huge quantities of labeled data provided through enhanced algorithms, nowadays, CNN is widely used in almost every area of study. One of the main uses of wearable technology and CNN within medical surveillance is human activity recognition (HAR), which must require constant tracking of everyday activities. This paper provides a comprehensive study of the application of CNNs in the classification of HAR tasks. We describe their enhancement, from their antecedents up to the current state-of-the-art systems of deep learning (DL). We have provided a comprehensive working principle of CNN for HAR tasks, and a CNN-based model is presented to perform the classification of human activities. The proposed technique interprets data from sensor sequences of inputs by using a multi-layered CNN that gathers temporal and spatial data related to human activities. The publicly available WISDM dataset for HAR has been used to perform this study. This proposed study uses the two-dimensional CNN approach to make a model for the classification of different human activities. A recent version of Python software has been used to perform the study. The rate of accuracy for HAR through the proposed model in this experiment is 97.20%, which is better than the previously estimated state-of-the-art technique. The findings of the study imply that using DL methods for activity recognition might greatly increase accuracy and increase the range of applications where HAR can be used successfully. We have also described the future research trends in the field of HAR in this article.

摘要

卷积神经网络(CNN)是计算机视觉人工智能神经网络(ANN)的重要组成部分,主要用于模式识别系统。CNN 的最重要应用是医学图像分析、图像分类、视频中的目标识别、推荐系统、金融时间序列分析、自然语言处理和人机界面。然而,随着计算能力的技术进步和通过增强算法提供的大量标记数据的出现,如今 CNN 已广泛应用于几乎每个研究领域。可穿戴技术和 CNN 在医疗监测中的主要用途之一是人体活动识别(HAR),这必须要求对日常活动进行持续跟踪。本文全面研究了 CNN 在 HAR 任务分类中的应用。我们描述了它们的增强,从它们的前身到当前最先进的深度学习(DL)系统。我们提供了用于 HAR 任务的 CNN 的全面工作原理,并提出了一个基于 CNN 的模型来执行人类活动的分类。所提出的技术通过使用多层 CNN 来解释来自输入传感器序列的数据,该 CNN 收集与人类活动相关的时间和空间数据。已经使用公共可用的 HAR WISDM 数据集来执行这项研究。这项研究使用二维 CNN 方法来为不同的人类活动建立模型。最近版本的 Python 软件已用于执行这项研究。在这项实验中,通过所提出的模型进行 HAR 的准确率为 97.20%,优于之前估计的最先进技术。研究结果表明,使用深度学习方法进行活动识别可能会大大提高准确性,并增加 HAR 成功应用的范围。本文还描述了 HAR 领域的未来研究趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75ff/10730728/8cf873893578/41598_2023_49739_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验