Shen Xinxu, Houser Troy, Smith David V, Murty Vishnu P
Department of Psychology, Temple University, 1701 N 13th St, Philadelphia, PA, 19122, USA.
Department of Psychology, University of Oregon, Eugene, OR, 97403, USA.
Psychon Bull Rev. 2023 Feb;30(1):308-316. doi: 10.3758/s13423-022-02171-4. Epub 2022 Sep 9.
The use of naturalistic stimuli, such as narrative movies, is gaining popularity in many fields, characterizing memory, affect, and decision-making. Narrative recall paradigms are often used to capture the complexity and richness of memory for naturalistic events. However, scoring narrative recalls is time-consuming and prone to human biases. Here, we show the validity and reliability of using a natural language processing tool, the Universal Sentence Encoder (USE), to automatically score narrative recalls. We compared the reliability in scoring made between two independent raters (i.e., hand scored) and between our automated algorithm and individual raters (i.e., automated) on trial-unique video clips of magic tricks. Study 1 showed that our automated segmentation approaches yielded high reliability and reflected measures yielded by hand scoring. Study 1 further showed that the results using USE outperformed another popular natural language processing tool, GloVe. In Study 2, we tested whether our automated approach remained valid when testing individuals varying on clinically relevant dimensions that influence episodic memory, age, and anxiety. We found that our automated approach was equally reliable across both age groups and anxiety groups, which shows the efficacy of our approach to assess narrative recall in large-scale individual difference analysis. In sum, these findings suggested that machine learning approach implementing USE is a promising tool for scoring large-scale narrative recalls and perform individual difference analysis for research using naturalistic stimuli.
使用自然主义刺激,如叙事电影,在许多领域越来越受欢迎,可用于刻画记忆、情感和决策。叙事回忆范式常用于捕捉对自然主义事件记忆的复杂性和丰富性。然而,对叙事回忆进行评分既耗时又容易出现人为偏差。在此,我们展示了使用一种自然语言处理工具——通用句子编码器(USE)自动对叙事回忆进行评分的有效性和可靠性。我们比较了在魔术表演的独特视频片段上,两位独立评分者(即人工评分)之间以及我们的自动算法与个体评分者之间(即自动评分)评分的可靠性。研究1表明,我们的自动分割方法具有很高的可靠性,且反映出与人工评分相同的测量结果。研究1还进一步表明,使用USE得出的结果优于另一种流行的自然语言处理工具GloVe。在研究2中,我们测试了在对因影响情景记忆、年龄和焦虑等临床相关维度而存在差异的个体进行测试时我们的自动方法是否仍然有效。我们发现,我们的自动方法在两个年龄组和焦虑组中同样可靠,这表明我们的方法在大规模个体差异分析中评估叙事回忆的有效性。总之,这些发现表明,实施USE的机器学习方法是对大规模叙事回忆进行评分以及对使用自然主义刺激的研究进行个体差异分析的一种很有前景的工具。