Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4821-4825. doi: 10.1109/EMBC48229.2022.9871385.
Motor Imagery-based Brain Computer Interface (MI-BCI) is a typical active BCI with a main focus on motor intention identification. Hybrid motor imagery (MI) decoding methods that based on multi-modal fusion of Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), especially deep learning-based methods, become popular in recent MI-BCI studies. However, the fusion strategy and network design in deep learning-based methods are complex. To solve this problem, we proposed the multi-channel fusion method (MCF) to simplify current fusion methods, and we designed a multi-channel fusion hybrid network (MCFHNet) based on MCF. MCFHNet combines depthwise convolutional layers, channel attention mechanism, and Bidirectional Long Short Term Memory (Bi-LSTM) layers, which enables strong capability of feature extraction in spatial and temporal domain. The comparison between MCFHNet and representative deep learning-based methods was performed on an open EEG-fNIRS dataset. We found the proposed method can yield superior performance (mean accuracy of 99.641 % in 5-fold cross validation of an intra-subject experiment). This work provides a new option for multi-modal MI decoding, which can be applied in the rehabilitation field based on hybrid BCI systems.
基于运动想象的脑机接口(MI-BCI)是一种典型的主动式 BCI,主要专注于运动意图识别。基于多模态融合的混合运动想象(MI)解码方法,特别是基于深度学习的方法,在最近的 MI-BCI 研究中变得越来越流行。然而,深度学习方法中的融合策略和网络设计很复杂。为了解决这个问题,我们提出了多通道融合方法(MCF)来简化当前的融合方法,并基于 MCF 设计了一个多通道融合混合网络(MCFHNet)。MCFHNet 结合了深度卷积层、通道注意力机制和双向长短期记忆(Bi-LSTM)层,使其具有强大的时空域特征提取能力。我们在一个公开的 EEG-fNIRS 数据集上对 MCFHNet 与代表性的深度学习方法进行了比较。我们发现所提出的方法可以获得更好的性能(在一个内个体实验的 5 折交叉验证中,平均准确率为 99.641%)。这项工作为多模态 MI 解码提供了一种新的选择,可应用于基于混合 BCI 系统的康复领域。