Suppr超能文献

基于对抗学习和最大平方损失的无监督域自适应在多期 CT 图像中肝脏肿瘤检测的应用。

Unsupervised Domain Adaptation Using Adversarial Learning and Maximum Square Loss for Liver Tumors Detection in Multi-phase CT Images.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1536-1539. doi: 10.1109/EMBC48229.2022.9871539.

Abstract

Automatic and efficient liver tumor detection in multi-phase CT images is essential in computer-aided diagnosis of liver tumors. Nowadays, deep learning has been widely used in medical applications. Normally, deep learning-based AI systems need a large quantity of training data, but in the medical field, acquiring sufficient training data with high-quality annotations is a significant challenge. To solve the lack of training data issue, domain adaptation-based methods have recently been developed as a technique to bridge the domain gap across datasets with different feature characteristics and data distributions. This paper presents a domain adaptation-based method for detecting liver tumors in multi-phase CT images. We adopt knowledge for model learning from PV phase images to ART and NC phase images. Clinical Relevance- To minimize the domain gap we employ an adversarial learning scheme with the maximum square loss for mid-level output feature maps using an anchorless detector. Experiments show that our proposed method performs much better for various CT-phase images than normal training.

摘要

在计算机辅助诊断肝脏肿瘤中,自动、高效地检测多期 CT 图像中的肝脏肿瘤至关重要。如今,深度学习已被广泛应用于医学领域。通常情况下,基于深度学习的 AI 系统需要大量的训练数据,但在医学领域,获取具有高质量标注的充足训练数据是一个重大挑战。为了解决训练数据不足的问题,基于域适应的方法最近被开发出来,作为一种技术可以在具有不同特征和数据分布的数据集之间架起桥梁。本文提出了一种基于域适应的方法,用于检测多期 CT 图像中的肝脏肿瘤。我们采用从 PV 期图像到 ART 和 NC 期图像的知识来辅助模型学习。临床相关性- 为了最小化域间隙,我们使用无锚点探测器在中间层输出特征图上使用最大平方损失进行对抗性学习。实验表明,与正常训练相比,我们提出的方法在各种 CT 相位图像上的性能要好得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验