Suppr超能文献

使用无监督域适应方法从非增强CT学习冠状动脉CT血管造影中的冠状动脉钙化评分

Learning coronary artery calcium scoring in coronary CTA from non-contrast CT using unsupervised domain adaptation.

作者信息

Zhai Zhiwei, van Velzen Sanne G M, Lessmann Nikolas, Planken Nils, Leiner Tim, Išgum Ivana

机构信息

Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, Netherlands.

Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam, Netherlands.

出版信息

Front Cardiovasc Med. 2022 Sep 12;9:981901. doi: 10.3389/fcvm.2022.981901. eCollection 2022.

Abstract

Deep learning methods have demonstrated the ability to perform accurate coronary artery calcium (CAC) scoring. However, these methods require large and representative training data hampering applicability to diverse CT scans showing the heart and the coronary arteries. Training methods that accurately score CAC in cross-domain settings remains challenging. To address this, we present an unsupervised domain adaptation method that learns to perform CAC scoring in coronary CT angiography (CCTA) from non-contrast CT (NCCT). To address the domain shift between NCCT (source) domain and CCTA (target) domain, feature distributions are aligned between two domains using adversarial learning. A CAC scoring convolutional neural network is divided into a feature generator that maps input images to features in the latent space and a classifier that estimates predictions from the extracted features. For adversarial learning, a discriminator is used to distinguish the features between source and target domains. Hence, the feature generator aims to extract features with aligned distributions to fool the discriminator. The network is trained with adversarial loss as the objective function and a classification loss on the source domain as a constraint for adversarial learning. In the experiments, three data sets were used. The network is trained with 1,687 labeled chest NCCT scans from the National Lung Screening Trial. Furthermore, 200 labeled cardiac NCCT scans and 200 unlabeled CCTA scans were used to train the generator and the discriminator for unsupervised domain adaptation. Finally, a data set containing 313 manually labeled CCTA scans was used for testing. Directly applying the CAC scoring network trained on NCCT to CCTA led to a sensitivity of 0.41 and an average false positive volume 140 mm/scan. The proposed method improved the sensitivity to 0.80 and reduced average false positive volume of 20 mm/scan. The results indicate that the unsupervised domain adaptation approach enables automatic CAC scoring in contrast enhanced CT while learning from a large and diverse set of CT scans without contrast. This may allow for better utilization of existing annotated data sets and extend the applicability of automatic CAC scoring to contrast-enhanced CT scans without the need for additional manual annotations. The code is publicly available at https://github.com/qurAI-amsterdam/CACscoringUsingDomainAdaptation.

摘要

深度学习方法已证明有能力进行准确的冠状动脉钙化(CAC)评分。然而,这些方法需要大量且具有代表性的训练数据,这阻碍了其在显示心脏和冠状动脉的各种CT扫描中的应用。在跨域设置中准确对CAC进行评分的训练方法仍然具有挑战性。为了解决这个问题,我们提出了一种无监督域适应方法,该方法学习从非增强CT(NCCT)在冠状动脉CT血管造影(CCTA)中进行CAC评分。为了解决NCCT(源)域和CCTA(目标)域之间的域转移问题,使用对抗学习在两个域之间对齐特征分布。一个CAC评分卷积神经网络被分为一个将输入图像映射到潜在空间中的特征的特征生成器和一个从提取的特征估计预测的分类器。对于对抗学习,使用一个鉴别器来区分源域和目标域之间的特征。因此,特征生成器旨在提取具有对齐分布的特征以欺骗鉴别器。该网络以对抗损失作为目标函数,并以源域上的分类损失作为对抗学习的约束进行训练。在实验中,使用了三个数据集。该网络使用来自国家肺癌筛查试验的1687份标记的胸部NCCT扫描进行训练。此外,200份标记的心脏NCCT扫描和200份未标记的CCTA扫描用于训练生成器和鉴别器以进行无监督域适应。最后,一个包含313份手动标记的CCTA扫描的数据集用于测试。直接将在NCCT上训练的CAC评分网络应用于CCTA,灵敏度为0.41,平均假阳性体积为140立方毫米/扫描。所提出的方法将灵敏度提高到0.80,并将平均假阳性体积减少到20立方毫米/扫描。结果表明,无监督域适应方法能够在增强CT中实现自动CAC评分,同时从大量多样的无对比CT扫描中学习。这可能允许更好地利用现有的注释数据集,并将自动CAC评分的适用性扩展到增强CT扫描,而无需额外的手动注释。代码可在https://github.com/qurAI-amsterdam/CACscoringUsingDomainAdaptation上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43f/9510682/3ee181c64e87/fcvm-09-981901-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验