Suppr超能文献

检测扩展去极化事件并进行时空分析以推进卒中治疗。

Detection of spreading depolarization events and spatiotemporal analysis for advancing stroke therapy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4900-4903. doi: 10.1109/EMBC48229.2022.9871768.

Abstract

While the presence of spreading depolarization (SD) and associated spreading depression have been well studied and known to be associated with post-ischemic brain damage, the spatiotemporal spread of these events from the site of injury is not well understood. With the recent development of high-density micro-electrocorticographic (ECoG) electrode arrays, monitoring the spread of the depolarizing events and associated depression is possible. The goal of this work is to define the electrocorticographic features of SD and associated depression across the multichannel array and search for patterns in these features that emerge across both space and time. We present the spatial distribution of features found from chronic ECoG recordings acquired from awake behaving rats induced with a rodent model of stroke. SD events were detected with an unsupervised algorithm that searched for a stereotyped pattern in the first derivative of the ECoG. The algorithm yielded a 58% correct detection rate on average across four rats, and a 36% false positive rate. We defined key electrophysiological features and mapped them onto the physical brain regions using MATLAB, such as the peak-to-peak amplitude of each SD event, the width (or duration) of the SD event, direct current (DC) level, and average rate of decline in the signal baseline. We performed k-means clustering to the activity in this feature space which yielded three contiguous regions in physical space. The elbow optimization method was applied to a distortion metric and indicated that 3 clusters was optimal. These findings motivate us to conduct future studies that would verify whether these 3 clusters in electrode-space correspond to immunohistochemically defined regions of tissue health, namely, infarct, penumbra, and healthy tissue. Clinical Relevance- The extent and severity of damage that stroke ultimately causes is suspected to be related to the progression of spreading depolarization and associated depression. An understanding of how the features of these electrophysiological events progress across the brain and over time is an important step toward eventual development of closed-loop therapies which limit and minimize the long-term effects of stroke.

摘要

虽然扩散性去极化(SD)及其相关的扩散性抑制已得到深入研究,并被认为与缺血后脑损伤有关,但这些事件从损伤部位向远处传播的时空模式还不太清楚。随着高密度微脑电描记术(ECoG)电极阵列的最新发展,监测去极化事件及其相关抑制的传播成为可能。这项工作的目的是定义跨多通道阵列的 SD 和相关抑制的脑电特征,并寻找在空间和时间上都出现的特征模式。我们展示了从清醒行为大鼠慢性 ECoG 记录中发现的特征的空间分布,这些大鼠是通过啮齿动物卒中模型诱导的。SD 事件是使用一种在 ECoG 的一阶导数中搜索刻板模式的无监督算法检测到的。该算法在四只大鼠中的平均检测率为 58%,假阳性率为 36%。我们定义了关键的电生理特征,并使用 MATLAB 将其映射到物理脑区,例如每个 SD 事件的峰峰值幅度、SD 事件的宽度(或持续时间)、直流(DC)水平以及信号基线的平均下降率。我们对该特征空间中的活动进行了 k-均值聚类,在物理空间中得到了三个连续的区域。肘形优化方法应用于失真度量,表明 3 个聚类是最优的。这些发现促使我们进行未来的研究,以验证电极空间中的这 3 个聚类是否对应于组织健康的免疫组织化学定义区域,即梗死、半影区和健康组织。临床意义-卒中最终导致的损伤的范围和严重程度被怀疑与扩散性去极化和相关抑制的进展有关。了解这些电生理事件的特征如何在大脑中传播并随时间变化是朝着最终开发限制和最小化卒中长期影响的闭环治疗的重要一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验