Biomedical Engineering, Duke University, Durham, NC, USA.
Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, USA.
Commun Biol. 2024 Mar 4;7(1):263. doi: 10.1038/s42003-024-05932-0.
Spreading depolarizations (SDs) are widely recognized as a major contributor to the progression of tissue damage from ischemic stroke even if blood flow can be restored. They are characterized by negative intracortical waveforms of up to -20 mV, propagation velocities of 3 - 6 mm/min, and massive disturbance of membrane ion homeostasis. High-density, micro-electrocorticographic (μECoG) epidural electrodes and custom, DC-coupled, multiplexed amplifiers, were used to continuously characterize and monitor SD and µECoG cortical signal evolution in awake, moving rats over days. This highly innovative approach can define these events over a large brain surface area (~ 3.4 × 3.4 mm), extending across the boundaries of the stroke, and offers sufficient electrode density (60 contacts total per array for a density of 5.7 electrodes / mm) to measure and determine the origin of SDs in relation to the infarct boundaries. In addition, spontaneous ECoG activity can simultaneously be detected to further define cortical infarct regions. This technology allows us to understand dynamic stroke evolution and provides immediate cortical functional activity over days. Further translational development of this approach may facilitate improved treatment options for acute stroke patients.
扩散性去极化(SD)被广泛认为是导致缺血性中风组织损伤进展的主要因素,即使血流可以恢复。它们的特征是负的皮质内波形可达-20 mV,传播速度为 3-6mm/min,以及膜离子动态平衡的大规模破坏。高密度、微电皮质电图(μECoG)硬膜外电极和定制的、直流耦合的、多路复用放大器,用于在清醒、运动的大鼠中连续表征和监测 SD 和 μECoG 皮质信号的演变,持续数天。这种极具创新性的方法可以在大脑的大面积表面(~3.4×3.4mm)上定义这些事件,扩展到中风的边界,并提供足够的电极密度(每个阵列共 60 个触点,密度为 5.7 个/毫米)来测量和确定 SD 与梗死边界的关系。此外,还可以同时检测到自发的 ECoG 活动,以进一步定义皮质梗死区域。这项技术使我们能够了解动态中风的演变,并提供数天的即时皮质功能活动。这种方法的进一步转化发展可能有助于改善急性中风患者的治疗选择。