Suppr超能文献

用于嗜酸性粒细胞性食管炎全 slides 活检诊断的深度多标签分割网络。

A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3211-3217. doi: 10.1109/EMBC48229.2022.9871086.

Abstract

Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat subjective task currently performed by pathologists. Here, we developed a machine learning pipeline to identify, quantitate and diagnose EoE patients' at the whole slide image level. We propose a platform that combines multi-label segmentation deep network decision support system with dynamics convolution that is able to process whole biopsy slide. Our network is able to segment both intact and not-intact eosinophils with a mean intersection over union (mIoU) of 0.93. This segmentation enables the local quantification of intact eosinophils with a mean absolute error of 0.611 eosinophils. We examined a cohort of 1066 whole slide images from 400 patients derived from multiple institutions. Using this set, our model achieved a global accuracy of 94.75%, sensitivity of 94.13%, and specificity of 95.25% in reporting EoE disease activity. Our work provides state-of-the-art performances on the largest EoE cohort to date, and successfully addresses two of the main challenges in EoE diagnostics and digital pathology, the need to detect several types of small features simultaneously, and the ability to analyze whole slides efficiently. Our results pave the way for an automated diagnosis of EoE and can be utilized for other conditions with similar challenges.

摘要

嗜酸性食管炎(EoE)是一种与嗜酸性粒细胞增多相关的食管过敏性炎症性疾病。疾病的诊断和监测需要确定食管活检中嗜酸性粒细胞的浓度,这是一个耗时、繁琐且有些主观的任务,目前由病理学家来完成。在这里,我们开发了一种机器学习管道,用于在全幻灯片图像水平上识别、定量和诊断 EoE 患者。我们提出了一个平台,该平台结合了多标签分割深度网络决策支持系统和动态卷积,能够处理整个活检幻灯片。我们的网络能够分割完整和不完整的嗜酸性粒细胞,平均交并比(mIoU)为 0.93。这种分割使完整的嗜酸性粒细胞能够进行局部定量,平均绝对误差为 0.611 个嗜酸性粒细胞。我们检查了来自多个机构的 400 名患者的 1066 张全幻灯片图像的队列。使用这个数据集,我们的模型在报告 EoE 疾病活动方面实现了 94.75%的全局准确性、94.13%的敏感性和 95.25%的特异性。我们的工作在迄今为止最大的 EoE 队列中提供了最先进的性能,并成功解决了 EoE 诊断和数字病理学中的两个主要挑战,即需要同时检测几种类型的小特征,以及高效分析整个幻灯片的能力。我们的结果为 EoE 的自动诊断铺平了道路,并可用于具有类似挑战的其他病症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/444e/9552249/f7e5ab0bd9fc/nihms-1840859-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验