Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4457-4460. doi: 10.1109/EMBC48229.2022.9871857.
In this work, we compare the performance of a multilayer perceptron neural network and convolutional networks for the prediction of 14-day mortality in patients with TBI, using a database obtained in a low-and middle-income country, with 529 records and 16 predictor variables. The missing values of several variables were filled in with techniques such as decision tree, random forest, k-nearest-neighbor and linear regression. In the simulation of neural networks, several optimization methods were used, such as RMSProp, Adam, Adamax and SGDM. The best results obtained for the prediction rate were an accuracy of 0.845 and an area under the ROC curve of 0.911. Clinical Relevance- This proposes the prediction of early mortality in patients with TBI with an area under ROC curve of 0.911.
在这项工作中,我们使用一个来自中低收入国家的数据库,比较了多层感知机神经网络和卷积网络在预测 TBI 患者 14 天死亡率方面的性能,该数据库有 529 条记录和 16 个预测变量。使用决策树、随机森林、k-最近邻和线性回归等技术填补了几个变量的缺失值。在神经网络的模拟中,使用了几种优化方法,如 RMSProp、Adam、Adamax 和 SGDM。预测率的最佳结果是准确性为 0.845,ROC 曲线下面积为 0.911。临床相关性-这提出了用 ROC 曲线下面积为 0.911 预测 TBI 患者的早期死亡率。