Suppr超能文献

基于人工神经网络的正畸治疗计划。

Orthodontic Treatment Planning based on Artificial Neural Networks.

机构信息

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

出版信息

Sci Rep. 2019 Feb 14;9(1):2037. doi: 10.1038/s41598-018-38439-w.

Abstract

In this study, multilayer perceptron artificial neural networks are used to predict orthodontic treatment plans, including the determination of extraction-nonextraction, extraction patterns, and anchorage patterns. The neural network can output the feasibilities of several applicable treatment plans, offering orthodontists flexibility in making decisions. The neural network models show an accuracy of 94.0% for extraction-nonextraction prediction, with an area under the curve (AUC) of 0.982, a sensitivity of 94.6%, and a specificity of 93.8%. The accuracies of the extraction patterns and anchorage patterns are 84.2% and 92.8%, respectively. The most important features for prediction of the neural networks are "crowding, upper arch" "ANB" and "curve of Spee". For handling discrete input features with missing data, the average value method has a better complement performance than the k-nearest neighbors (k-NN) method; for handling continuous features with missing data, k-NN performs better than the other methods most of the time. These results indicate that the proposed method based on artificial neural networks can provide good guidance for orthodontic treatment planning for less-experienced orthodontists.

摘要

在这项研究中,使用多层感知器人工神经网络来预测正畸治疗计划,包括确定拔牙不拔牙、拔牙模式和支抗模式。神经网络可以输出几种适用治疗计划的可行性,为正畸医生提供决策的灵活性。神经网络模型在拔牙不拔牙预测方面的准确率为 94.0%,曲线下面积(AUC)为 0.982,灵敏度为 94.6%,特异性为 93.8%。拔牙模式和支抗模式的准确率分别为 84.2%和 92.8%。神经网络预测的最重要特征是“拥挤,上弓”“ANB”和“Spee 曲线”。对于处理具有缺失数据的离散输入特征,平均值方法比 k-最近邻(k-NN)方法具有更好的补充性能;对于处理具有缺失数据的连续特征,k-NN 大多数情况下比其他方法表现更好。这些结果表明,基于人工神经网络的提出方法可以为经验较少的正畸医生提供良好的正畸治疗计划指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/752d/6375961/9fa38ba51ea3/41598_2018_38439_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验