Suppr超能文献

随机共振控制神经网络模型中的记忆巩固准确性。

Stochastic Resonance Governs Memory Consolidation Accuracy in a Neural Network Model.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2254-2257. doi: 10.1109/EMBC48229.2022.9871808.

Abstract

The formation and recollection of memories is a multi-step neural process subject to errors. We propose a computational model of memory nodes receiving input from a colored tic-tac-toe board. We report memory errors during consolidation and reconsolidation when different noise levels are introduced into the model. The model is based on Hebbian plasticity and attempts to store the color and position of an X or O from the board. Memory nodes simulating neurons use an integrate-and-fire model to represent the correct or incorrect storage of the board information by scaling synaptic weights. We explored how baseline firing rate, which we considered analogous to noise in storing memory, impacted the creation of correct and incorrect memories. We found that a higher firing rate was associated with fewer accurate memories. Interestingly, the ideal amount of noise for correct memory storage was nonzero. This phenomenon is known as stochastic resonance, wherein random noise enhances processing. We also examined how many times our model could reactivate a memory before making an error. We found an exponentially decaying response, with a low firing rate yielding more stable memories. Even though our model incorporates only two memory nodes, it provides a basis for examining the consolidation and retrieval of memory storage based on the unique visual input of a tic-tac-toe board. Further work may incorporate different inputs, more nodes, and increased network complexity. Clinical Relevance- This model enables investigation of how the human cortex may utilize and exploit noise during information processing.

摘要

记忆的形成和回忆是一个多步骤的神经过程,容易出错。我们提出了一个记忆节点的计算模型,该模型接收来自彩色井字游戏棋盘的输入。我们报告了在整合和再巩固期间的记忆错误,当不同的噪声水平被引入模型时。该模型基于赫布可塑性,并试图存储棋盘上 X 或 O 的颜色和位置。模拟神经元的记忆节点使用积分和点火模型来通过调整突触权重来表示棋盘信息的正确或错误存储。我们探讨了基线发射率(我们认为类似于存储记忆中的噪声)如何影响正确和错误记忆的产生。我们发现,更高的发射率与更少的准确记忆有关。有趣的是,正确记忆存储的理想噪声量不为零。这种现象称为随机共振,其中随机噪声增强了处理。我们还研究了我们的模型在出错之前可以重新激活记忆的次数。我们发现响应呈指数衰减,低发射率产生更稳定的记忆。尽管我们的模型仅包含两个记忆节点,但它为基于井字游戏棋盘的独特视觉输入检查记忆存储的整合和检索提供了基础。进一步的工作可能会包括不同的输入、更多的节点和增加网络的复杂性。临床相关性-该模型使我们能够研究人类大脑皮层在信息处理过程中如何利用和利用噪声。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验