Suppr超能文献

使用智能手机和皮肤电活动进行多层次疼痛量化。

Multi-level Pain Quantification using a Smartphone and Electrodermal Activity.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2475-2478. doi: 10.1109/EMBC48229.2022.9871228.

Abstract

Appropriate prescription of pain medication is challenging because pain is difficult to quantify due to the subjectiveness of pain assessment. Currently, clinicians must entirely rely on pain scales based on patients' assessments. This has been alleged to be one of the causes of drug overdose and addiction, and a contributor to the opioid crisis. Therefore, there is an urgent unmet need for objective pain assessment. Furthermore, as pain can occur anytime and anywhere, ambulatory pain monitoring would be welcomed in practice. In our previous study, we developed electrodermal activity (EDA)-derived indices and implemented them in a smartphone application that can communicate via Bluetooth to an EDA wearable device. While we previously showed high accuracy for high-level pain detection, multi-level pain detection has not been demonstrated. In this paper, we tested our smartphone application with a multi-level pain-induced dataset. The dataset was collected from fifteen subjects who underwent four levels of pain-inducing electrical pulse (EP) stimuli. We then performed statistical analyses and machine-learning techniques to classify multiple pain levels. Significant differences were observed in our EDA-derived indices among no-pain, low-pain, and high-pain segments. A random forest classifier showed 62.6% for the balanced accuracy, and a random forest regressor exhibited 0.441 for the coefficient of determination. Clinical Relevance - This is one of the first studies to present a smartphone application for detecting multiple levels of pain in real time using an EDA wearable device. This work shows the feasibility of ambulatory pain monitoring which can potentially be useful for chronic pain management.

摘要

适当开具止痛药物具有挑战性,因为疼痛评估具有主观性,难以量化。目前,临床医生必须完全依赖基于患者评估的疼痛量表。这被认为是药物过量和成瘾的原因之一,也是阿片类药物危机的一个促成因素。因此,客观的疼痛评估存在迫切的未满足需求。此外,由于疼痛可能随时随地发生,因此在实践中,移动性疼痛监测将受到欢迎。在我们之前的研究中,我们开发了基于皮肤电活动(EDA)的指标,并将其实施在一个智能手机应用程序中,该应用程序可以通过蓝牙与 EDA 可穿戴设备进行通信。虽然我们之前已经证明了高水平疼痛检测的高准确性,但尚未证明多水平疼痛检测的准确性。在本文中,我们使用多水平疼痛诱发数据集测试了我们的智能手机应用程序。该数据集是从 15 名接受四个级别的电脉冲(EP)刺激的受试者中收集的。然后,我们进行了统计分析和机器学习技术,以对多个疼痛水平进行分类。在无疼痛、低疼痛和高疼痛段中,我们的 EDA 衍生指标存在显著差异。随机森林分类器的平衡准确率为 62.6%,随机森林回归器的确定系数为 0.441。临床相关性-这是首次使用基于 EDA 的可穿戴设备实时检测多个级别的疼痛的智能手机应用程序之一。这项工作展示了移动性疼痛监测的可行性,这可能对慢性疼痛管理很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验