Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA.
Sensors (Basel). 2021 Jun 8;21(12):3956. doi: 10.3390/s21123956.
The subjectiveness of pain can lead to inaccurate prescribing of pain medication, which can exacerbate drug addiction and overdose. Given that pain is often experienced in patients' homes, there is an urgent need for ambulatory devices that can quantify pain in real-time. We implemented three time- and frequency-domain electrodermal activity (EDA) indices in our smartphone application that collects EDA signals using a wrist-worn device. We then evaluated our computational algorithms using thermal grill data from ten subjects. The thermal grill delivered a level of pain that was calibrated for each subject to be 8 out of 10 on a visual analog scale (VAS). Furthermore, we simulated the real-time processing of the smartphone application using a dataset pre-collected from another group of fifteen subjects who underwent pain stimulation using electrical pulses, which elicited a VAS pain score level 7 out of 10. All EDA features showed significant difference between painless and pain segments, termed for the 5-s segments before and after each pain stimulus. Random forest showed the highest accuracy in detecting pain, 81.5%, with 78.9% sensitivity and 84.2% specificity with leave-one-subject-out cross-validation approach. Our results show the potential of a smartphone application to provide near real-time objective pain detection.
疼痛的主观性可能导致疼痛药物的处方不准确,从而加剧药物成瘾和用药过量。鉴于疼痛通常在患者家中发生,因此迫切需要能够实时量化疼痛的可移动设备。我们在智能手机应用程序中实现了三个时间和频率域皮肤电活动(EDA)指标,该应用程序使用腕戴式设备收集 EDA 信号。然后,我们使用来自十个对象的热格栅数据评估了我们的计算算法。热格栅为每个对象提供了一个疼痛水平,在视觉模拟量表(VAS)上的疼痛评分为 8/10。此外,我们使用另一组十五名对象预先收集的数据集模拟了智能手机应用程序的实时处理,这些对象使用电脉冲进行疼痛刺激,VAS 疼痛评分为 7/10。所有 EDA 特征在无痛和疼痛段之间均显示出明显差异,这些特征是在每个疼痛刺激之前和之后的 5 秒段中命名的。随机森林在检测疼痛方面显示出最高的准确性,在使用留一法交叉验证方法时,准确率为 81.5%,灵敏度为 78.9%,特异性为 84.2%。我们的结果表明,智能手机应用程序具有提供接近实时的客观疼痛检测的潜力。