Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4691-4694. doi: 10.1109/EMBC48229.2022.9871120.
Depression is among the most prevalent mental health disorders with increasing prevalence worldwide. While early detection is critical for the prognosis of depression treatment, detecting depression is challenging. Previous deep learning research has thus begun to detect depression with the transcripts of clinical interview questions. Since approaches using Bidirectional Encoder Representations from Transformers (BERT) have demonstrated particular promise, we hypothesize that ensembles of BERT variants will improve depression detection. Thus, in this research, we compare the depression classification abilities of three BERT variants and four ensembles of BERT variants on the transcripts of responses to 12 clinical interview questions. Specifically, we implement the ensembles with different ensemble strategies, number of model components, and architectural layer combinations. Our results demonstrate that ensembles increase mean F1 scores and robustness across clinical interview data. Clinical relevance- This research highlights the potential of ensembles to detect depression with text which is important to guide future development of healthcare application ecosystems.
抑郁症是最常见的精神健康障碍之一,其发病率在全球范围内呈上升趋势。虽然早期发现对抑郁症治疗的预后至关重要,但检测抑郁症具有挑战性。因此,之前的深度学习研究已经开始使用临床访谈问题的记录来检测抑郁症。由于使用来自转换器的双向编码器表示(BERT)的方法表现出特别有希望,我们假设 BERT 变体的集合将改善抑郁症检测。因此,在这项研究中,我们比较了三种 BERT 变体和四种 BERT 变体集合在对 12 个临床访谈问题的回答记录上的抑郁分类能力。具体来说,我们使用不同的集合策略、模型组件数量和架构层组合来实现集合。我们的结果表明,集合提高了跨临床访谈数据的平均 F1 分数和稳健性。临床相关性-这项研究强调了集合通过文本检测抑郁症的潜力,这对于指导未来医疗保健应用生态系统的发展很重要。