Suppr超能文献

从咳嗽和语音中进行设备不变的肺部患者识别的深度多元域转换。

Deep Multivariate Domain Translation for Device Invariant Pulmonary Patient Identification from Cough and Speech Sounds.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4473-4478. doi: 10.1109/EMBC48229.2022.9871967.

Abstract

Pulmonary audio sensing from cough and speech sounds in commodity mobile and wearable devices is increasingly used for remote pulmonary patient monitoring, home healthcare, and automated disease analysis. Patient identification is important for such applications to ensure system accuracy and integrity, and thus avoiding errors and misdiagnosis. Widespread usage and deployment of such patient identification models across various devices are challenging due to domain shift of acoustic features because of device heterogeneity. Because of this phenomenon, a patient identification model developed using audio data collected with one type of device is not usable when deployed in another type of device, which is a concern for model portability and general usability. This paper presents a framework utilizing a multivariate deep neural network regressor as a feature translator between source device and target device domains to reduce the effect of domain shift for better model portability. Extensive and empirical experiments of our translation framework consisting of two different human sound (speech and cough) based pulmonary patient identification tasks using audio data collected from 91 real patients demonstrate that it can recover up to 64.8% of lost accuracy due to domain shift across two common and widely used mobile and wearable devices: smartphone and smartwatch. Clinical Relevance- The methods presented in this paper will enable efficient and easy portability of pulmonary patient identification models from cough and speech across various mobile and wearable devices used by a patient.

摘要

从咳嗽和语音信号中进行肺部音频感应,已被越来越多地用于远程肺部患者监测、家庭医疗保健和自动化疾病分析。对于这些应用,患者识别对于确保系统的准确性和完整性非常重要,从而避免错误和误诊。由于声学特征的域转移,由于设备异质性,此类患者识别模型在各种设备中的广泛使用和部署具有挑战性。由于这种现象,使用一种类型的设备收集的音频数据开发的患者识别模型在部署到另一种类型的设备时不可用,这是对模型可移植性和通用性的关注。本文提出了一种利用多元深度神经网络回归器作为源设备和目标设备域之间的特征转换器的框架,以减少域转移的影响,从而提高模型的可移植性。我们的翻译框架由两个不同的基于人类声音(语音和咳嗽)的肺部患者识别任务组成,使用从 91 名真实患者收集的音频数据进行了广泛的实证实验,实验表明,它可以恢复由于域转移而导致的高达 64.8%的准确性损失在两个常见且广泛使用的移动和可穿戴设备:智能手机和智能手表。临床相关性-本文提出的方法将使从咳嗽和语音中进行肺部患者识别模型能够在患者使用的各种移动和可穿戴设备之间高效且轻松地进行移植。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验