Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2369-2372. doi: 10.1109/EMBC48229.2022.9871658.
Connectivity is key to understanding neural circuit computations. However, estimating in vivo connectivity using recording of activity alone is challenging. Issues include common input and bias errors in inference, and limited temporal resolution due to large data requirements. Perturbations (e.g. stimulation) can improve inference accuracy and accelerate estimation. However, optimal stimulation protocols for rapid network estimation are not yet established. Here, we use neural network simulations to identify stimulation protocols that minimize connectivity inference errors when using generalized linear model inference. We find that stimulation parameters that balance excitatory and inhibitory activity minimize inference error. We also show that pairing optimized stimulation with adaptive protocols that choose neurons to stimulate via Bayesian inference may ultimately enable rapid network inference.
连接性是理解神经回路计算的关键。然而,仅通过记录活动来估计体内连接性具有挑战性。问题包括推断中的常见输入和偏差误差,以及由于数据要求大而导致的有限时间分辨率。扰动(例如刺激)可以提高推断准确性并加速估计。然而,用于快速网络估计的最佳刺激方案尚未建立。在这里,我们使用神经网络模拟来确定在使用广义线性模型推断时最小化连接推断误差的刺激方案。我们发现,平衡兴奋性和抑制性活动的刺激参数可最小化推断误差。我们还表明,通过贝叶斯推断选择要刺激的神经元的优化刺激与自适应协议相结合,最终可能实现快速网络推断。