Suppr超能文献

基于 nnUNet 的多模态乳腺 MRI 分割及组织勾画机器人肿瘤手术规划体模

nnUNet-based Multi-modality Breast MRI Segmentation and Tissue-Delineating Phantom for Robotic Tumor Surgery Planning.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3495-3501. doi: 10.1109/EMBC48229.2022.9871109.

Abstract

Segmentation of the thoracic region and breast tissues is crucial for analyzing and diagnosing the presence of breast masses. This paper introduces a medical image segmentation architecture that aggregates two neural networks based on the state-of-the-art nnU-Net. Additionally, this study proposes a polyvinyl alcohol cryogel (PVA-C) breast phantom, based on its automated segmentation approach, to enable planning and navigation experiments for robotic breast surgery. The dataset consists of multimodality breast MRI of T2W and STIR images obtained from 10 patients. A statistical analysis of segmentation tasks emphasizes the Dice Similarity Coefficient (DSC), segmentation accuracy, sensitivity, and specificity. We first use a single class labeling to segment the breast region and then exploit it as an input for three-class labeling to segment fatty, fibroglandular (FGT), and tumorous tissues. The first network has a 0.95 DCS, while the second network has a 0.95, 0.83, and 0.41 for fat, FGT, and tumor classes, respectively. Clinical Relevance-This research is relevant to the breast surgery community as it establishes a deep learning-based (DL) algorithmic and phantomic foundation for surgical planning and navigation that will exploit preoperative multimodal MRI and intraoperative ultrasound to achieve highly cosmetic breast surgery. In addition, the planning and navigation will guide a robot that can cut, resect, bag, and grasp a tissue mass that encapsulates breast tumors and positive tissue margins. This image-guided robotic approach promises to potentiate the accuracy of breast surgeons and improve patient outcomes.

摘要

胸部和乳腺组织的分割对于分析和诊断乳腺肿块的存在至关重要。本文介绍了一种医学图像分割架构,该架构基于最先进的 nnU-Net 聚合了两个神经网络。此外,本研究还提出了一种聚乙烯醇水凝胶(PVA-C)乳腺体模,基于其自动分割方法,实现了机器人乳腺手术的规划和导航实验。该数据集包含来自 10 名患者的 T2W 和 STIR 多模态乳腺 MRI。分割任务的统计分析强调了 Dice 相似系数(DSC)、分割准确性、灵敏度和特异性。我们首先使用单类标签对乳腺区域进行分割,然后将其用作三分类标签的输入,以分割脂肪、纤维腺体(FGT)和肿瘤组织。第一个网络的 DSC 为 0.95,第二个网络的脂肪、FGT 和肿瘤类别的 DSC 分别为 0.95、0.83 和 0.41。临床相关性-这项研究与乳腺外科界相关,因为它为手术规划和导航建立了基于深度学习(DL)的算法和体模基础,该基础将利用术前多模态 MRI 和术中超声来实现高度美容的乳腺手术。此外,规划和导航将指导机器人进行切割、切除、包裹和抓取包裹乳腺肿瘤和阳性组织边缘的组织肿块。这种图像引导的机器人方法有望提高乳腺外科医生的准确性并改善患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验