Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:9-12. doi: 10.1109/EMBC48229.2022.9871859.
Drowsiness monitoring can reduce workplace and driving accidents. To enable a discreet device for drowsiness monitoring and detection, this work presents a drowsiness user-study with an in-ear EEG system, which uses two user-generic, dry electrode earpieces and a wireless interface for streaming data. Twenty-one drowsiness trials were recorded across five human users and drowsiness detection was implemented with three classifier models: logistic regression, support vector machine (SVM), and random forest. To estimate drowsiness detection performance across usage scenarios, these classifiers were validated with user-specific, leave-one-trial-out, and leave-one-user-out training. To our knowledge, this is the first wireless, multi-channel, dry electrode in-ear EEG to be used for drowsiness monitoring. With user-specific training, a SVM achieved a detection accuracy of 95.9%. When evaluating a never-before-seen user, a similar SVM achieved a 94.5% accuracy, comparable to the best performing state-of-the-art wet electrode in-ear and scalp EEG systems.
瞌睡监测可以减少工作场所和驾驶事故。为了实现一种用于瞌睡监测和检测的隐蔽设备,本工作提出了一项瞌睡用户研究,使用了一种入耳式 EEG 系统,该系统使用两个用户通用的干式电极耳塞和一个用于流式数据的无线接口。在五名人类用户中记录了 21 次瞌睡试验,并使用三种分类器模型(逻辑回归、支持向量机(SVM)和随机森林)来实现瞌睡检测。为了估计在不同使用场景下的瞌睡检测性能,使用用户特定的、一次一试验和一次一用户的留一法训练来验证这些分类器。据我们所知,这是第一个用于瞌睡监测的无线、多通道、干式电极入耳式 EEG。使用用户特定的训练,SVM 实现了 95.9%的检测准确率。在评估一个从未见过的用户时,一个类似的 SVM 实现了 94.5%的准确率,与表现最好的最先进的湿电极入耳式和头皮 EEG 系统相当。