IEEE Trans Neural Syst Rehabil Eng. 2018 Feb;26(2):400-406. doi: 10.1109/TNSRE.2018.2790359.
Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.
困倦驾驶是导致全球致命事故的主要原因之一。在过去的二十年中,许多研究已经探索了使用基于脑电图(EEG)的脑机接口(BCI)系统进行困倦检测的可行性和实用性。然而,在将面向实验室的 BCI 过渡到实际环境的过程中,一个主要挑战是方便地获得高质量的 EEG 并具有长期佩戴舒适性。最近,已经提出从无毛发(NHB)头皮区域获取 EEG 作为避免由于电极和皮肤之间的头发干扰而产生的许多技术限制的替代解决方案。此外,我们的初步研究表明,从 NHB 区域可以获得与困倦相关的信息丰富的 EEG 特征。本研究扩展了以前的工作,使用广泛研究的机器学习分类器进行跨会话验证来定量评估困倦检测的性能。离线结果显示,在所有受试者中,使用 NHB EEG 和整个头皮 EEG 进行困倦检测的准确性之间没有显著差异( )。本研究的结果证明了 NHB EEG 进行困倦检测的有效性和实用性,并可能促进许多其他实际 BCI 应用的探索和开发。