Suppr超能文献

强化学习在脓毒症 ICU 患者最佳液体和血管加压素干预中的应用。

A Reinforcement Learning Application for Optimal Fluid and Vasopressor Interventions in Septic ICU Patients.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:321-324. doi: 10.1109/EMBC48229.2022.9871055.

Abstract

Sepsis is one of the leading causes of death in ICU and its timely recognition and management are of primary importance. Resuscitation from hypotension in patients with sepsis is one of the first challenges that require fluid and/or vasopressor administrations. Unfortunately, clinical guidelines provide only indications of the strategy that should be adopted in this critical population but personalized strategies are still missing. In this study, we propose a comparative analysis of reinforcement learning applications on ICU data collected in the electronic health records and publicly available within the MIMIC-III database. The ultimate goal of the study is to estimate the optimal fluid and vasopressor administrations. Results show that, after the use of principal component analysis for reducing feature space dimensionality, model performances increased, thus suggesting that additional preprocessing strategies might be used for both reducing the computational cost and refining model performances. Clinical relevance In a context where clinical guidelines are not able to provide the best treatment strategies at a patient level, reinforcement learning applications trained on retrospectively collected data may be used for developing models able to suggest to clinicians the optimal dosage of fluids and/or vasopressors in order to improve 90-day patients' survival.

摘要

脓毒症是 ICU 患者死亡的主要原因之一,及时识别和管理至关重要。脓毒症患者低血压的复苏是首先需要进行液体和/或血管加压素治疗的挑战之一。不幸的是,临床指南仅提供了在这一危急人群中应采用的策略的指示,但仍缺乏个性化策略。在这项研究中,我们提出了在电子健康记录中收集的 ICU 数据和 MIMIC-III 数据库中公开提供的数据上应用强化学习的比较分析。该研究的最终目标是估计最佳的液体和血管加压素的管理。结果表明,在使用主成分分析降低特征空间维度后,模型性能得到了提高,这表明可能会使用其他预处理策略来降低计算成本和提高模型性能。临床相关性在临床指南无法在患者层面提供最佳治疗策略的情况下,基于回顾性收集的数据进行强化学习应用可以用于开发能够向临床医生建议最佳液体和/或血管加压素剂量的模型,以提高 90 天患者的生存率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验