Suppr超能文献

高级暹罗神经网络在颈动脉超声运动跟踪中的分析。

Analysis of Advanced Siamese Neural Networks for Motion Tracking of Sonography of Carotid Arteries.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2173-2176. doi: 10.1109/EMBC48229.2022.9871782.

Abstract

The Siamese Tracker (ST) for tracking objects of interest in Ultrasound (US) images does not incorporate video specific cues and assumes a fixed template of the reference block. Recently, a more advanced version of ST, Correlation Filter Network (CFNet), which overcomes the problems of ST, has been used for tracking in US images. In this study, we demonstrate how the basic CFNet can be made computationally more efficient by reducing the number of layers in its feature extraction network. We further show that due to the unique architecture of the CFNet, this strategy does not affect the performance of the baseline CFNet considerably. Our methodology was evaluated on 10 random sequences from the publicly available carotid artery dataset. CFNet obtained a 35.7% improvement in the average localization error over the basic ST, thus demonstrating that it is a practical and robust tracking algorithm for tracking objects in US images.

摘要

暹罗跟踪器(ST)用于跟踪超声(US)图像中的感兴趣对象,它不包含视频特定线索,并假设参考块的固定模板。最近,一种更先进的 ST 版本——相关滤波器网络(CFNet)已被用于 US 图像的跟踪,该版本克服了 ST 的问题。在本研究中,我们展示了如何通过减少其特征提取网络中的层数,使基本 CFNet 在计算上更加高效。我们进一步表明,由于 CFNet 的独特架构,该策略不会对基准 CFNet 的性能产生重大影响。我们的方法在公开的颈动脉数据集的 10 个随机序列上进行了评估。CFNet 使平均定位误差相对于基本 ST 提高了 35.7%,这表明它是一种实用且强大的跟踪算法,可用于跟踪 US 图像中的对象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验