Suppr超能文献

基于更快的 RCNN 的 B 型超声图像中颈总动脉横切面的定位:一种深度学习方法。

Localization of common carotid artery transverse section in B-mode ultrasound images using faster RCNN: a deep learning approach.

机构信息

Indian Institute of Technology Varanasi, Banaras Hindu University, Varanasi, UP, India.

Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, CG, India.

出版信息

Med Biol Eng Comput. 2020 Mar;58(3):471-482. doi: 10.1007/s11517-019-02099-3. Epub 2020 Jan 2.

Abstract

Cardiologists can acquire important information related to patients' cardiac health using carotid artery stiffness, its lumen diameter (LD), and its carotid intima-media thickness (cIMT). The sonographers primarily concern about the location of the artery in B-mode ultrasound images. Localization using manual methods is tedious and time-consuming and also may lead to some errors. On the other hand, automated approaches are more objective and can provide the localization of the artery at near real time. Above arterial parameters may be determined after localization of the artery in real time.A novel method of localization of common carotid artery (CCA) transverse section is presented in this work. The method is known as fast region convolutional neural network (FRCNN)-based localization method and is designed using a stack of three layers viz. convolutional layers, fully connected layers, and pooling layers. These organized layers constitute a region proposal network (RPN) and an object class detection network (OCDN). We obtain an outcome as a bounding box along with a score of prediction around the cross-section of the CCA.B-mode ultrasound image database of CCA is split into training and testing set, to accomplish this, three partition methods K = 2, 5, and 10 are used in our work. The training is extended for 30, 200, and 2000 epochs in order to achieve fine-tuned features from the convolutional neural network. After 2000 epochs, we obtain 95% validation accuracy; however, mean of the accuracies up to 2000 epochs is 89.36% for K = 10 partitions protocol (training 90%, testing 10%). Generated CNN model is tested on a different dataset of 433 images and the acquired accuracy is 87.99%. Thus, the proposed method including an advanced deep learning technique demonstrates promising localization for carotid artery transverse section. Graphical abstract.

摘要

心脏病专家可以通过颈动脉僵硬度、管腔直径(LD)和颈动脉内膜中层厚度(cIMT)来获取与患者心脏健康相关的重要信息。超声科医生主要关注动脉在 B 型超声图像中的位置。手动定位既繁琐又耗时,并且可能会导致一些错误。另一方面,自动化方法更客观,可以实时提供动脉的定位。在实时定位动脉后,可以确定上述动脉参数。本工作提出了一种实时定位颈总动脉(CCA)横切面的新方法。该方法称为基于快速区域卷积神经网络(FRCNN)的定位方法,使用三层堆栈设计,即卷积层、全连接层和池化层。这些组织层构成了区域提议网络(RPN)和目标类检测网络(OCDN)。我们得到了一个围绕 CCA 横截面的边界框以及预测分数。将 CCA 的 B 型超声图像数据库分为训练集和测试集,为此,我们在工作中使用了三种分区方法 K = 2、5 和 10。训练扩展到 30、200 和 2000 个时期,以从卷积神经网络中获得微调的特征。经过 2000 个时期,我们获得了 95%的验证精度;然而,对于 K = 10 分区协议(训练 90%,测试 10%),直到 2000 个时期的平均精度为 89.36%。生成的 CNN 模型在另一个包含 433 张图像的数据集上进行了测试,获得的精度为 87.99%。因此,包括先进的深度学习技术的提出的方法为颈动脉横切面的定位展示了很有前途的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验