Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4664-4667. doi: 10.1109/EMBC48229.2022.9871958.
The aim of this study was to create a robust generalizable model to classify person's affective state based on physiological signals obtained using wearable sensor devices. Traditional machine learning methods require manual feature extraction from time sequences. Deep learning methods, such as Convolutional Neural Networks (CNN), can automatically extract features from time sequences. However, CNN models can be prone to overfitting, especially when the dataset is small. We apply a novel idea of using unsupervised convolutional autoencoders to automatically extract features from time-series data that are then fed to supervised classifier to classify people's affective state. We achieve almost 3% accuracy increase over traditional CNN model using all physio data from WESAD dataset, 2% increase using chest only physio data, and 8% increase using wrist only physio data while classifying neutral, stress, and amusement states. Code to reproduce the results can be found at https://github.com/srovins/wesad Clinical Relevance- A high-performing affective state recognition system can be utilized for various medical applications, ranging from patient monitoring to cognitive therapy.
本研究旨在创建一个稳健的、可推广的模型,基于使用可穿戴传感器设备获得的生理信号来对人的情感状态进行分类。传统的机器学习方法需要从时间序列中手动提取特征。深度学习方法,如卷积神经网络(CNN),可以自动从时间序列中提取特征。然而,CNN 模型可能容易出现过拟合,特别是在数据集较小时。我们应用了一种新颖的想法,使用无监督卷积自动编码器从时间序列数据中自动提取特征,然后将这些特征输入到监督分类器中,以分类人的情感状态。与传统的 CNN 模型相比,我们使用 WESAD 数据集的所有生理数据将准确率提高了近 3%,仅使用胸部生理数据将准确率提高了 2%,仅使用手腕生理数据将准确率提高了 8%,从而可以对中性、压力和娱乐状态进行分类。重现结果的代码可以在 https://github.com/srovins/wesad 上找到。
临床相关性-一个性能良好的情感状态识别系统可以应用于各种医疗应用,从患者监测到认知治疗。