Martin Tuchman School of Management, New Jersey Institute of Technology, Newark, NJ 07102, USA.
Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
Sensors (Basel). 2022 Nov 3;22(21):8467. doi: 10.3390/s22218467.
Emotion recognition, or the ability of computers to interpret people's emotional states, is a very active research area with vast applications to improve people's lives. However, most image-based emotion recognition techniques are flawed, as humans can intentionally hide their emotions by changing facial expressions. Consequently, brain signals are being used to detect human emotions with improved accuracy, but most proposed systems demonstrate poor performance as EEG signals are difficult to classify using standard machine learning and deep learning techniques. This paper proposes two convolutional neural network (CNN) models (M1: heavily parameterized CNN model and M2: lightly parameterized CNN model) coupled with elegant feature extraction methods for effective recognition. In this study, the most popular EEG benchmark dataset, the DEAP, is utilized with two of its labels, valence, and arousal, for binary classification. We use Fast Fourier Transformation to extract the frequency domain features, convolutional layers for deep features, and complementary features to represent the dataset. The M1 and M2 CNN models achieve nearly perfect accuracy of 99.89% and 99.22%, respectively, which outperform every previous state-of-the-art model. We empirically demonstrate that the M2 model requires only 2 seconds of EEG signal for 99.22% accuracy, and it can achieve over 96% accuracy with only 125 milliseconds of EEG data for valence classification. Moreover, the proposed M2 model achieves 96.8% accuracy on valence using only 10% of the training dataset, demonstrating our proposed system's effectiveness. Documented implementation codes for every experiment are published for reproducibility.
情感识别,即计算机解读人类情绪状态的能力,是一个非常活跃的研究领域,它具有广泛的应用,可以改善人们的生活。然而,大多数基于图像的情感识别技术存在缺陷,因为人类可以通过改变面部表情来故意隐藏自己的情绪。因此,人们开始使用脑信号来提高情感识别的准确性,但大多数提出的系统表现不佳,因为 EEG 信号很难使用标准的机器学习和深度学习技术进行分类。本文提出了两种卷积神经网络 (CNN) 模型 (M1: 参数丰富的 CNN 模型和 M2: 参数精简的 CNN 模型),并结合了优雅的特征提取方法,以实现有效的识别。在这项研究中,使用了最受欢迎的 EEG 基准数据集 DEAP,以及其中的两个标签,效价和唤醒度,进行二进制分类。我们使用快速傅里叶变换提取频域特征,卷积层提取深度特征,并使用互补特征来表示数据集。M1 和 M2 CNN 模型的准确率分别达到了 99.89%和 99.22%,几乎达到了完美,优于以往的所有最先进模型。我们通过实验证明,M2 模型仅需 2 秒的 EEG 信号即可达到 99.22%的准确率,仅需 125 毫秒的 EEG 数据即可达到 96%以上的效价分类准确率。此外,仅使用 10%的训练数据集,所提出的 M2 模型在效价上的准确率达到了 96.8%,证明了我们提出的系统的有效性。我们已经为每个实验发布了可重现的记录实现代码。