Suppr超能文献

基于腕部光电容积脉搏波传感器的特征增强混合卷积神经网络的应激识别。

Feature Augmented Hybrid CNN for Stress Recognition Using Wrist-based Photoplethysmography Sensor.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2374-2377. doi: 10.1109/EMBC46164.2021.9630576.

Abstract

Stress is a physiological state that hampers mental health and has serious consequences to physical health. More-over, the COVID-19 pandemic has increased stress levels among people across the globe. Therefore, continuous monitoring and detection of stress are necessary. The recent advances in wearable devices have allowed the monitoring of several physiological signals related to stress. Among them, wrist-worn wearable devices like smartwatches are most popular due to their convenient usage. And the photoplethysmography (PPG) sensor is the most prevalent sensor in almost all consumer-grade wrist-worn smartwatches. Therefore, this paper focuses on using a wrist-based PPG sensor that collects Blood Volume Pulse (BVP) signals to detect stress which may be applicable for consumer-grade wristwatches. Moreover, state-of-the-art works have used either classical machine learning algorithms to detect stress using hand-crafted features or have used deep learning algorithms like Convolutional Neural Network (CNN) which automatically extracts features. This paper proposes a novel hybrid CNN (H-CNN) classifier that uses both the hand-crafted features and the automatically extracted features by CNN to detect stress using the BVP signal. Evaluation on the benchmark WESAD dataset shows that, for 3-class classification (Baseline vs. Stress vs. Amusement), our proposed H-CNN outperforms traditional classifiers and normal CNN by ≈5% and ≈7% accuracy, and ≈10% and ≈7% macro F1 score, respectively. Also for 2-class classification (Stress vs. Non-stress), our proposed H-CNN outperforms traditional classifiers and normal CNN by ≈3% and ≈5% accuracy, and ≈3% and ≈7% macro F1score, respectively.

摘要

压力是一种妨碍心理健康的生理状态,对身体健康有严重的后果。此外,COVID-19 大流行增加了全球人民的压力水平。因此,持续监测和检测压力是必要的。可穿戴设备的最新进展允许监测与压力相关的几种生理信号。在这些信号中,腕戴式可穿戴设备,如智能手表,由于其使用方便而最受欢迎。而光电容积脉搏波(PPG)传感器是几乎所有消费级腕戴式智能手表中最常见的传感器。因此,本文专注于使用基于手腕的 PPG 传感器来收集血流脉冲(BVP)信号来检测压力,这种压力检测方法可能适用于消费级的智能手表。此外,最新的研究工作已经使用经典的机器学习算法来使用手工制作的特征来检测压力,或者使用深度学习算法,如卷积神经网络(CNN),自动提取特征。本文提出了一种新颖的混合 CNN(H-CNN)分类器,该分类器使用手工制作的特征和 CNN 自动提取的特征来使用 BVP 信号检测压力。在基准 WESAD 数据集上的评估表明,对于 3 类分类(基线与压力与娱乐),我们提出的 H-CNN 比传统分类器和普通 CNN 分别提高了约 5%和 7%的准确率,以及约 10%和 7%的宏 F1 得分。对于 2 类分类(压力与非压力),我们提出的 H-CNN 比传统分类器和普通 CNN 分别提高了约 3%和 5%的准确率,以及约 3%和 7%的宏 F1 得分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验