Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3826-3829. doi: 10.1109/EMBC48229.2022.9871157.
This novel deep-learning (DL) algorithm addresses the challenging task of predicting uterine shape and location when deformed from its natural anatomy by the presence of an intrauterine (tandem)/intravaginal (ring) applicator during brachytherapy (BT) treatment for locally advanced cervical cancer. Paired pelvic MRI datasets from 92 subjects, acquired without (pre-BT) and with (at-BT) applicators, were used. We propose a novel automated algorithm to segment the uterus in pre-BT MR images using a deep convolutional neural network (CNN) incorporated with autoencoders. The proposed neural net is based on a pre-trained CNN Inception V4 architecture. It predicts a compressed vector by applying a multi-layer autoencoder, which is then back-projected into the segmentation contour of the uterus. Following this, another transfer learning approach using a modified U-net model is employed to predict the at-BT uterus shape from pre-BT MRI. The complex and large deformations of the uterus are quantified using free form deformation method. The proposed algorithm yielded an average Dice Coefficient (DC) of 94.1±3.3 and an average Hausdorff Distance (HD) of 4.0±3.1 mm compared to the manually defined ground truth by expert clinicians. Further, the modified U-net prediction of the at-BT uterus resulted in a DC accuracy of 88.1±3.8 and HD of 5.8±3.6 mm. The mean uterine surface point-to-point displacement was 25.0 [10.0-62.5] mm from the pre-BT position. Our unique DL method can thus successfully predict tandem-deformed uterine shape and position from MR images taken before the BT implant procedure i.e. without the applicator in place. Clinical relevance-The proposed DL-based framework can be incorporated as an automatic prediction tool of uterine deformation due to applicator insertion for personalized BT treatments. It holds promise for more streamlined clinical/technical decision-making before BT applicator insertion resulting in improved dosimetric outcomes.
本文提出了一种新颖的深度学习(DL)算法,旨在解决在近距离放射治疗(Brachytherapy,BT)治疗局部晚期宫颈癌时,由于宫腔内(串联)/阴道内(环)施源器的存在而导致子宫变形的情况下,预测子宫形状和位置的难题。该研究使用了 92 名患者的配对骨盆 MRI 数据集,这些数据集分别在没有(BT 前)和有(BT 时)施源器的情况下采集。我们提出了一种新颖的自动算法,使用深度卷积神经网络(CNN)结合自动编码器来分割 BT 前的 MRI 子宫图像。所提出的神经网络基于预先训练的 CNN Inception V4 架构。它通过应用多层自动编码器来预测一个压缩向量,然后将该向量反向投影到子宫的分割轮廓上。在此之后,使用修改后的 U-net 模型进行另一种迁移学习方法,以从 BT 前的 MRI 预测 BT 时的子宫形状。使用自由形态变形方法来量化子宫的复杂和大变形。与专家临床医生手动定义的真实值相比,该算法的平均骰子系数(Dice Coefficient,DC)为 94.1±3.3,平均 Hausdorff 距离(Hausdorff Distance,HD)为 4.0±3.1mm。此外,修改后的 U-net 对 BT 时子宫的预测得到了 88.1±3.8 的 DC 准确性和 5.8±3.6mm 的 HD。子宫表面点到点的平均位移距离为从 BT 前位置的 25.0[10.0-62.5]mm。因此,我们独特的 DL 方法可以成功地从 BT 植入前的 MRI 图像中预测串联变形的子宫形状和位置,即没有施源器的情况下。临床意义-所提出的基于 DL 的框架可以作为由于施源器插入导致的子宫变形的自动预测工具,用于个性化的 BT 治疗。它有望在 BT 施源器插入前为更精简的临床/技术决策提供帮助,从而改善剂量学结果。