Suppr超能文献

磁共振成像引导近距离治疗中宫颈癌大体肿瘤体积的深度学习分割。

Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy.

机构信息

Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, Amsterdam, CX, The Netherlands.

出版信息

Radiat Oncol. 2023 May 29;18(1):91. doi: 10.1186/s13014-023-02283-8.

Abstract

BACKGROUND

Segmentation of the Gross Tumor Volume (GTV) is a crucial step in the brachytherapy (BT) treatment planning workflow. Currently, radiation oncologists segment the GTV manually, which is time-consuming. The time pressure is particularly critical for BT because during the segmentation process the patient waits immobilized in bed with the applicator in place. Automatic segmentation algorithms can potentially reduce both the clinical workload and the patient burden. Although deep learning based automatic segmentation algorithms have been extensively developed for organs at risk, automatic segmentation of the targets is less common. The aim of this study was to automatically segment the cervical cancer GTV on BT MRI images using a state-of-the-art automatic segmentation framework and assess its performance.

METHODS

A cohort of 195 cervical cancer patients treated between August 2012 and December 2021 was retrospectively collected. A total of 524 separate BT fractions were included and the axial T2-weighted (T2w) MRI sequence was used for this project. The 3D nnU-Net was used as the automatic segmentation framework. The automatic segmentations were compared with the manual segmentations used for clinical practice with Sørensen-Dice coefficient (Dice), 95th Hausdorff distance (95th HD) and mean surface distance (MSD). The dosimetric impact was defined as the difference in D98 (ΔD98) and D90 (ΔD90) between the manual segmentations and the automatic segmentations, evaluated using the clinical dose distribution. The performance of the network was also compared separately depending on FIGO stage and on GTV volume.

RESULTS

The network achieved a median Dice of 0.73 (interquartile range (IQR) = 0.50-0.80), median 95th HD of 6.8 mm (IQR = 4.2-12.5 mm) and median MSD of 1.4 mm (IQR = 0.90-2.8 mm). The median ΔD90 and ΔD98 were 0.18 Gy (IQR = -1.38-1.19 Gy) and 0.20 Gy (IQR =-1.10-0.95 Gy) respectively. No significant differences in geometric or dosimetric performance were observed between tumors with different FIGO stages, however significantly improved Dice and dosimetric performance was found for larger tumors.

CONCLUSIONS

The nnU-Net framework achieved state-of-the-art performance in the segmentation of the cervical cancer GTV on BT MRI images. Reasonable median performance was achieved geometrically and dosimetrically but with high variability among patients.

摘要

背景

大体肿瘤体积(GTV)的分割是近距离放射治疗(BT)治疗计划工作流程中的关键步骤。目前,放射肿瘤学家手动分割 GTV,这既耗时又费力。对于 BT 来说,时间压力尤其关键,因为在分割过程中,患者在病床上等待,应用器就位。自动分割算法有可能减轻临床工作量和患者负担。尽管基于深度学习的自动分割算法已经广泛应用于危险器官,但目标的自动分割却不常见。本研究旨在使用最先进的自动分割框架自动分割 BT MRI 图像上的宫颈癌 GTV,并评估其性能。

方法

回顾性收集了 2012 年 8 月至 2021 年 12 月期间治疗的 195 例宫颈癌患者的队列。共纳入 524 个单独的 BT 分次,本项目使用了轴向 T2 加权(T2w)MRI 序列。3D nnU-Net 被用作自动分割框架。将自动分割与用于临床实践的手动分割进行比较,使用 Sørensen-Dice 系数(Dice)、第 95 个 Hausdorff 距离(95th HD)和平均表面距离(MSD)进行比较。定义了剂量学影响,即手动分割和自动分割之间 D98(ΔD98)和 D90(ΔD90)的差异,使用临床剂量分布进行评估。还分别根据 FIGO 分期和 GTV 体积比较了网络的性能。

结果

该网络实现了中位数为 0.73(四分位距(IQR)= 0.50-0.80)的 Dice、中位数为 6.8mm(IQR = 4.2-12.5mm)的 95th HD 和中位数为 1.4mm(IQR = 0.90-2.8mm)的 MSD。中位数 ΔD90 和 ΔD98 分别为 0.18Gy(IQR = -1.38-1.19Gy)和 0.20Gy(IQR = -1.10-0.95Gy)。不同 FIGO 分期的肿瘤之间在几何或剂量学性能方面没有显著差异,但对于较大的肿瘤,Dice 和剂量学性能显著提高。

结论

nnU-Net 框架在 BT MRI 图像上宫颈癌 GTV 的分割方面取得了最先进的性能。在几何和剂量学方面实现了合理的中位数性能,但患者之间的差异很大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c4/10227985/aff44f326de1/13014_2023_2283_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验