Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4048-4051. doi: 10.1109/EMBC48229.2022.9871035.
Deep learning has been applied to enhance the performance of EEG-based brain-computer interface applications. However, the cross-subject variations in EEG signals cause domain shifts and negatively affect the model performance and generalization. Meta-learning algorithms have shown fast new domain adaption in various fields, which may help solve the domain shift problems in EEG. Reptile, with satisfactory performance and low computational costs, stands out from other existing meta-learning algorithms. We integrated Reptile with a deep neural network as Reptile-EEG for the EEG motor imagery tasks, and compared Reptile-EEG with other state-of-the-art models in three motor imagery BCI benchmark datasets. Results show that Reptile-EEGdoes not outperform simple training of deep neural networks in motor imagery BCI tasks.
深度学习已被应用于提高基于脑电图的脑机接口应用的性能。然而,脑电图信号中的跨被试变化导致了领域转移,对模型性能和泛化产生负面影响。元学习算法在各个领域中表现出快速的新领域适应能力,这可能有助于解决脑电图中的领域转移问题。爬行动物算法以其令人满意的性能和低计算成本从其他现有元学习算法中脱颖而出。我们将爬行动物算法与深度神经网络相结合,作为 Reptile-EEG 用于脑电图运动想象任务,并在三个运动想象脑机接口基准数据集上将 Reptile-EEG 与其他最先进的模型进行了比较。结果表明,在运动想象脑机接口任务中,Reptile-EEG 并不优于深度神经网络的简单训练。