Suppr超能文献

元学习是否能提高 EEG 运动想象分类?

Does Meta-Learning Improve EEG Motor Imagery Classification?

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4048-4051. doi: 10.1109/EMBC48229.2022.9871035.

Abstract

Deep learning has been applied to enhance the performance of EEG-based brain-computer interface applications. However, the cross-subject variations in EEG signals cause domain shifts and negatively affect the model performance and generalization. Meta-learning algorithms have shown fast new domain adaption in various fields, which may help solve the domain shift problems in EEG. Reptile, with satisfactory performance and low computational costs, stands out from other existing meta-learning algorithms. We integrated Reptile with a deep neural network as Reptile-EEG for the EEG motor imagery tasks, and compared Reptile-EEG with other state-of-the-art models in three motor imagery BCI benchmark datasets. Results show that Reptile-EEGdoes not outperform simple training of deep neural networks in motor imagery BCI tasks.

摘要

深度学习已被应用于提高基于脑电图的脑机接口应用的性能。然而,脑电图信号中的跨被试变化导致了领域转移,对模型性能和泛化产生负面影响。元学习算法在各个领域中表现出快速的新领域适应能力,这可能有助于解决脑电图中的领域转移问题。爬行动物算法以其令人满意的性能和低计算成本从其他现有元学习算法中脱颖而出。我们将爬行动物算法与深度神经网络相结合,作为 Reptile-EEG 用于脑电图运动想象任务,并在三个运动想象脑机接口基准数据集上将 Reptile-EEG 与其他最先进的模型进行了比较。结果表明,在运动想象脑机接口任务中,Reptile-EEG 并不优于深度神经网络的简单训练。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验