Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, People's Republic of China.
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
J Neural Eng. 2024 Apr 11;21(2). doi: 10.1088/1741-2552/ad3986.
. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
. 脑电图 (EEG) 在脑机接口 (BCI) 中的广泛应用归功于其非侵入性和提供高分辨率数据的能力。EEG 信号的采集是一个简单的过程,但与这些信号相关的数据通常存在数据稀缺性,并且需要大量资源进行适当的标记。此外,由于 EEG 信号中存在显著的个体间变异性,EEG 模型的泛化性能存在显著的局限性。. 为了解决这些问题,我们提出了一种新的自监督对比学习框架,用于解码跨主体场景中的运动想象 (MI) 信号。具体来说,我们设计了一个结合卷积神经网络和注意力机制的编码器。在对比学习训练阶段,网络通过数据增强的预训练任务进行训练,以最小化同源变换对之间的距离,同时最大化异源变换对之间的距离。它增加了用于训练的数据量,并提高了网络从原始信号中提取深度特征的能力,而无需依赖数据的真实标签。. 为了评估我们的框架的效果,我们在三个公共的 MI 数据集上进行了广泛的实验:BCI IV IIa、BCI IV IIb 和 HGD 数据集。该方法在三个数据集上的跨主体分类准确率分别达到 67.32%、82.34%和 81.13%,优于现有的方法。. 因此,该方法有望提高基于 MI 的 BCI 系统中跨主体迁移学习的性能。