Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3749-3752. doi: 10.1109/EMBC48229.2022.9871726.
Automatic Brain Tumor Segmentation (BraTS) from MRI plays a key role in diagnosing and treating brain tumors. Although 3D U-Nets achieve state-of-the-art results in BraTS, their clinical use is limited due to requiring high-end GPU with high memory. To address the limitation, we utilize several techniques for customizing a memory-efficient yet ac-curate deep framework based on 2D U-nets. In the framework, the simultaneous multi-label tumor segmentation is decomposed into fusion of sequential single-label (binary) segmentation tasks. In addition to reducing the memory consumption, it may also improve the segmentation accuracy since each U-net focuses on a sub-task, simpler than whole BraTS segmentation task. Extensive data augmentations on multi-modal MRI and the batch dice-loss function are also employed to further increase the generalization accuracy. Experiments on BraTS 2020 demonstrate that our framework almost achieves state-of-the-art results. Dice scores of 0.905, 0.903, and 0.822 for whole tumor, tumor core, and enhancing tumor are accomplished on the testing set. Moreover, our customized framework is executable on budget-GPUs with minimum requirement of only 2G RAM. Clinical relevance- We develop a memory-efficient deep Brain tumor segmentation tool that significantly reduces the hardware requirement of tumor segmentation while maintaining comparable accuracy and time. These advantages make our framework suitable for widespread use in clinical applications, especially in low-income regions. We plan to release the framework as a part of a free clinical brain imaging analysis tool. The code for this framework is publicly available:https://github.com/Nima-Hs/BraTS.
基于 MRI 的自动脑肿瘤分割(BraTS)在脑肿瘤的诊断和治疗中起着关键作用。尽管 3D U-Nets 在 BraTS 中取得了最先进的结果,但由于需要具有高内存的高端 GPU,其临床应用受到限制。为了解决这个限制,我们利用了几种技术,基于 2D U-Nets 定制了一个内存高效但准确的深度框架。在该框架中,同时多标签肿瘤分割被分解为顺序单标签(二进制)分割任务的融合。除了降低内存消耗外,它还可以提高分割准确性,因为每个 U-Net专注于一个子任务,比整个 BraTS 分割任务更简单。此外,还在多模态 MRI 上进行了广泛的数据增强,并采用了批量 Dice 损失函数,以进一步提高泛化准确性。在 BraTS 2020 上的实验表明,我们的框架几乎达到了最先进的水平。在测试集上,整个肿瘤、肿瘤核心和增强肿瘤的 Dice 分数分别达到 0.905、0.903 和 0.822。此外,我们定制的框架可以在预算 GPU 上运行,最低要求仅为 2G RAM。临床相关性-我们开发了一种内存高效的深度脑肿瘤分割工具,在保持可比准确性和时间的同时,大大降低了肿瘤分割的硬件要求。这些优势使我们的框架适合广泛应用于临床应用,特别是在低收入地区。我们计划将该框架作为免费临床脑成像分析工具的一部分发布。该框架的代码可在以下网址获得:https://github.com/Nima-Hs/BraTS。