Suppr超能文献

MSFR-Net:用于脑肿瘤分割的多模态和单模态特征重新校准网络。

MSFR-Net: Multi-modality and single-modality feature recalibration network for brain tumor segmentation.

作者信息

Li Xiang, Jiang Yuchen, Li Minglei, Zhang Jiusi, Yin Shen, Luo Hao

机构信息

Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China.

Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway.

出版信息

Med Phys. 2023 Apr;50(4):2249-2262. doi: 10.1002/mp.15933. Epub 2022 Aug 23.

Abstract

BACKGROUND

Accurate and automated brain tumor segmentation from multi-modality MR images plays a significant role in tumor treatment. However, the existing approaches mainly focus on the fusion of multi-modality while ignoring the correlation between single-modality and tumor subcomponents. For example, T2-weighted images show good visualization of edema, and T1-contrast images have a good contrast between enhancing tumor core and necrosis. In the actual clinical process, professional physicians also label tumors according to these characteristics. We design a method for brain tumors segmentation that utilizes both multi-modality fusion and single-modality characteristics.

METHODS

A multi-modality and single-modality feature recalibration network (MSFR-Net) is proposed for brain tumor segmentation from MR images. Specifically, multi-modality information and single-modality information are assigned to independent pathways. Multi-modality network explicitly learns the relationship between all modalities and all tumor sub-components. Single-modality network learns the relationship between single-modality and its highly correlated tumor subcomponents. Then, a dual recalibration module (DRM) is designed to connect the parallel single-modality network and multi-modality network at multiple stages. The function of the DRM is to unify the two types of features into the same feature space.

RESULTS

Experiments on BraTS 2015 dataset and BraTS 2018 dataset show that the proposed method is competitive and superior to other state-of-the-art methods. The proposed method achieved the segmentation results with Dice coefficients of 0.86 and Hausdorff distance of 4.82 on BraTS 2018 dataset, with dice coefficients of 0.80, positive predictive value of 0.76, and sensitivity of 0.78 on BraTS 2015 dataset.

CONCLUSIONS

This work combines the manual labeling process of doctors and introduces the correlation between single-modality and the tumor subcomponents into the segmentation network. The method improves the segmentation performance of brain tumors and can be applied in the clinical practice. The code of the proposed method is available at: https://github.com/xiangQAQ/MSFR-Net.

摘要

背景

从多模态磁共振图像中准确自动地分割脑肿瘤在肿瘤治疗中起着重要作用。然而,现有方法主要集中在多模态融合上,而忽略了单模态与肿瘤子成分之间的相关性。例如,T2加权图像能很好地显示水肿,T1增强图像在增强的肿瘤核心与坏死之间有良好的对比度。在实际临床过程中,专业医生也根据这些特征对肿瘤进行标注。我们设计了一种利用多模态融合和单模态特征的脑肿瘤分割方法。

方法

提出了一种用于从磁共振图像中分割脑肿瘤的多模态和单模态特征重新校准网络(MSFR-Net)。具体来说,多模态信息和单模态信息被分配到独立的路径中。多模态网络明确学习所有模态与所有肿瘤子成分之间的关系。单模态网络学习单模态与其高度相关的肿瘤子成分之间的关系。然后,设计了一个双重重新校准模块(DRM),在多个阶段连接并行的单模态网络和多模态网络。DRM的功能是将两种类型的特征统一到同一个特征空间中。

结果

在BraTS 2015数据集和BraTS 2018数据集上的实验表明,所提出的方法具有竞争力,优于其他现有最先进的方法。所提出的方法在BraTS 2018数据集上的分割结果的Dice系数为0.86,豪斯多夫距离为4.82,在BraTS 2015数据集上的Dice系数为0.80,阳性预测值为0.76,灵敏度为0.78。

结论

这项工作结合了医生的手动标注过程,并将单模态与肿瘤子成分之间的相关性引入到分割网络中。该方法提高了脑肿瘤的分割性能,可应用于临床实践。所提出方法的代码可在以下网址获取:https://github.com/xiangQAQ/MSFR-Net。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验