Suppr超能文献

用于临床应用的快速且节省内存的脑 MRI 分割框架。

A Fast and Memory-Efficient Brain MRI Segmentation Framework for Clinical Applications.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2140-2143. doi: 10.1109/EMBC48229.2022.9871715.

Abstract

Current segmentation tools of brain MRI provide quantitative structural information for diagnosing neurological disorders. However, their clinical application is generally limited due to high memory usage and time consumption. Although 3D CNN-based segmentation methods have recently achieved the state-of-the-art and come up with timely available results, they heavily require high memory GPUs. In this paper, we customize a memory-efficient (GPU) brain structure segmentation framework, named FLBS, based on nnU-nets which enables our framework to adapt its architecture based on memory constraints dynamically. To further reduce the need for memory, we also reduce multi-label brain segmentation to the fusion of sequential single-label segmentations. In the first step, single label patches are extracted from the T1w and segmentation maps by locating the approximate area of each structure on the MNI305 template, including the safety margin. These considerations not only decrease the hardware usage but also maintains comparable computational time. Moreover, the target brain structures are customizable based on the specific clinical applications. We evaluate the performance in terms of Dice coefficient, runtime, and GPU requirement on OASIS-3 and CoRR-BNU1 datasets. The validation results show our comparable accuracies with state-of-the-arts and confirm the generalizability on unseen datasets while significantly reducing GPU requirements and maintaining runtime duration. Our framework is also executable on a budget GPU with a minimum requirement of 4G RAM. Clinical Relevance- We develop a memory-efficient deep Brain MRI segmentation tool that significantly reduces the hardware requirement of MRI segmentation while maintaining comparable accuracy and time. These advantages make FLBS suitable for widespread use in clinical applications especially for clinics with a limited budget. We plan to release the framework as a part of a free clinical brain imaging analysis tool. The code for this framework is publicly available.

摘要

目前的脑 MRI 分割工具为神经疾病的诊断提供了定量的结构信息。然而,由于内存使用量大和耗时,它们的临床应用通常受到限制。虽然基于 3D CNN 的分割方法最近已经达到了最先进的水平,并提供了及时的结果,但它们严重依赖于高内存 GPU。在本文中,我们基于 nnU-net 定制了一个内存高效(GPU)的脑结构分割框架,命名为 FLBS,它可以根据内存约束动态地调整其架构。为了进一步减少内存需求,我们还将多标签脑分割简化为连续单标签分割的融合。在第一步中,通过在 MNI305 模板上定位每个结构的大致区域(包括安全裕度),从 T1w 和分割图中提取单标签补丁。这些考虑不仅降低了硬件的使用,而且还保持了相当的计算时间。此外,目标脑结构可以根据特定的临床应用进行定制。我们在 OASIS-3 和 CoRR-BNU1 数据集上从 Dice 系数、运行时间和 GPU 要求等方面评估了性能。验证结果表明,我们的方法与最先进的方法相比具有相当的准确性,并在显著减少 GPU 要求的同时,保持运行时间的长度,确认了在未见数据集上的泛化能力。我们的框架也可以在预算 GPU 上运行,其最低要求为 4G RAM。临床相关性-我们开发了一种内存高效的深度脑 MRI 分割工具,它大大降低了 MRI 分割的硬件要求,同时保持了相当的准确性和时间。这些优势使 FLBS 适合在临床应用中广泛使用,特别是对于预算有限的诊所。我们计划将该框架作为免费的临床脑成像分析工具的一部分发布。该框架的代码是公开的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验