Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3599-3602. doi: 10.1109/EMBC48229.2022.9871916.
It is well known that electroencephalograms (EEGs) often contain artifacts due to muscle activity, eye blinks, and various other causes. Detecting such artifacts is an essential first step toward a correct interpretation of EEGs. Although much effort has been devoted to semi-automated and automated artifact detection in EEG, the problem of artifact detection remains challenging. In this paper, we propose a convolutional neural network (CNN) enhanced by transformers using belief matching (BM) loss for automated detection of five types of artifacts: chewing, electrode pop, eye movement, muscle, and shiver. Specifically, we apply these five detectors at individual EEG channels to distinguish artifacts from background EEG. Next, for each of these five types of artifacts, we combine the output of these channel-wise detectors to detect artifacts in multi-channel EEG segments. These segment-level classifiers can detect specific artifacts with a balanced accuracy (BAC) of 0.947, 0.735, 0.826, 0.857, and 0.655 for chewing, electrode pop, eye movement, muscle, and shiver artifacts, respectively. Finally, we combine the outputs of the five segment-level detectors to perform a combined binary classification (any artifact vs. background). The resulting detector achieves a sensitivity (SEN) of 42.0%, 32.0%, and 13.3%, at a specificity (SPE) of 95%, 97%, and 99%, respectively. This artifact detection module can reject artifact segments while only removing a small fraction of the background EEG, leading to a cleaner EEG for further analysis.
众所周知,脑电图(EEG)中经常包含由于肌肉活动、眼动和各种其他原因引起的伪迹。检测这些伪迹是正确解释 EEG 的重要第一步。尽管已经在 EEG 中对半自动化和自动化伪迹检测进行了大量研究,但伪迹检测问题仍然具有挑战性。在本文中,我们提出了一种使用变压器增强的卷积神经网络(CNN),并使用置信匹配(BM)损失进行自动化检测五种类型的伪迹:咀嚼、电极弹出、眼动、肌肉和颤抖。具体来说,我们将这五个检测器应用于单个 EEG 通道,以区分伪迹和背景 EEG。接下来,对于这五种类型的伪迹中的每一种,我们将这些通道级别的检测器的输出组合起来,以检测多通道 EEG 段中的伪迹。这些分段级别的分类器可以检测特定的伪迹,对于咀嚼、电极弹出、眼动、肌肉和颤抖伪迹,其平衡准确率(BAC)分别为 0.947、0.735、0.826、0.857 和 0.655。最后,我们将五个分段级别的检测器的输出结合起来进行联合二进制分类(任何伪迹与背景)。所得到的检测器在特异性(SPE)为 95%、97%和 99%时,灵敏度(SEN)分别为 42.0%、32.0%和 13.3%。该伪迹检测模块可以拒绝伪迹段,而仅去除一小部分背景 EEG,从而为进一步分析提供更干净的 EEG。