Suppr超能文献

多主体特征选择在整合多组学分析中的应用

Multi-agent Feature Selection for Integrative Multi-omics Analysis.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1638-1642. doi: 10.1109/EMBC48229.2022.9871758.

Abstract

Multiomics data integration is key for cancer prediction as it captures different aspects of molecular mechanisms. Nevertheless, the high-dimensionality of multi-omics data with a relatively small number of patients presents a challenge for the cancer prediction tasks. While feature selection techniques have been widely used to tackle the curse of dimensionality of multi-omics data, most existing methods have been applied to each type of omics data separately. In this paper, we propose a multi-agent architecture for feature selection, called MAgentOmics, to consider all omics data together. MAgentOmics extends the ant colony optimization algorithm to multi-omics data, which iteratively builds candidate solutions and evaluates them. Moreover, a new fitness function is introduced to assess the candidate feature subsets without using prediction target such as survival time of patients. Therefore, it can be considered as an unsupervised method. We evaluate the performance of MAgentOmics on the TCGA ovarian cancer multi-omics data from 176 patients using a 5-fold cross-validation. The results demonstrate that the integration power of MAgentOmics is relatively better than the state-of-the-art supervised multi-view method. The code is publicly available at https://github.com/SinaTabakhi/MAgentOmics. Clinical relevance- Discovering knowledge in existing multi-omics datasets through better feature selection enhances the clinical understanding of cancers and speeds-up decision-making in the clinic.

摘要

多组学数据的整合是癌症预测的关键,因为它可以捕捉到分子机制的不同方面。然而,多组学数据的高维性和患者数量相对较少,这给癌症预测任务带来了挑战。虽然特征选择技术已被广泛用于解决多组学数据的维度诅咒问题,但大多数现有方法都是分别应用于每种类型的组学数据。在本文中,我们提出了一种称为 Magentomics 的多代理体系结构,用于一起考虑所有组学数据。Magentomics 将蚁群优化算法扩展到多组学数据中,该算法迭代构建候选解决方案并对其进行评估。此外,引入了一个新的适应度函数来评估候选特征子集,而无需使用预测目标(例如患者的生存时间)。因此,它可以被认为是一种无监督方法。我们使用来自 176 名患者的 TCGA 卵巢癌多组学数据通过 5 折交叉验证来评估 Magentomics 的性能。结果表明,Magentomics 的集成能力相对优于最先进的监督多视图方法。该代码可在 https://github.com/SinaTabakhi/MAgentOmics 上获得。临床相关性-通过更好的特征选择发现现有多组学数据集中的知识,可以增强对癌症的临床理解,并加速临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验