Suppr超能文献

DOMSCNet:一种使用多层组学数据进行胃癌分类的深度学习模型。

DOMSCNet: a deep learning model for the classification of stomach cancer using multi-layer omics data.

作者信息

Borah Kasmika, Das Himanish Shekhar, Budhathoki Ram Kaji, Aurangzeb Khursheed, Mallik Saurav

机构信息

Department of Computer Science and Information Technology, Cotton University, Hem Baruah Rd, Panbazar, Guwahati, Kamrup Metropolitan district, Assam 781001, India.

Department of Electrical and Electronics Engineering, School of Engineering, Kathmandu University, Kavrepalanchok district, Dhulikhel 45200, Nepal.

出版信息

Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf115.

Abstract

The rapid advancement of next-generation sequencing (NGS) technology and the expanding availability of NGS datasets have led to a significant surge in biomedical research. To better understand the molecular processes, underlying cancer and to support its development, diagnosis, prediction, and therapy; NGS data analysis is crucial. However, the NGS multi-layer omics high-dimensional dataset is highly complex. In recent times, some computational methods have been developed for cancer omics data interpretation. However, various existing methods face challenges in accounting for diverse types of cancer omics data and struggle to effectively extract informative features for the integrated identification of core units. To address these challenges, we proposed a hybrid feature selection (HFS) technique to detect optimal features from multi-layer omics datasets. Subsequently, this study proposes a novel hybrid deep recurrent neural network-based model DOMSCNet to classify stomach cancer. The proposed model was made generic for all four multi-layer omics datasets. To observe the robustness of the DOMSCNet model, the proposed model was validated with eight external datasets. Experimental results showed that the SelectKBest-maximum relevancy minimum redundancy-Boruta (SMB), HFS technique outperformed all other HFS techniques. Across four multi-layer omics datasets and validated datasets, the proposed DOMSCNet model outdid existing classifiers along with other proposed classifiers.

摘要

下一代测序(NGS)技术的快速发展以及NGS数据集可用性的不断扩大,导致生物医学研究显著激增。为了更好地理解癌症潜在的分子过程,并支持其发展、诊断、预测和治疗,NGS数据分析至关重要。然而,NGS多层组学高维数据集高度复杂。近年来,已经开发了一些用于癌症组学数据解释的计算方法。然而,各种现有方法在处理不同类型的癌症组学数据方面面临挑战,并且难以有效地提取信息特征以进行核心单元的综合识别。为了应对这些挑战,我们提出了一种混合特征选择(HFS)技术,用于从多层组学数据集中检测最优特征。随后,本研究提出了一种基于新型混合深度循环神经网络的模型DOMSCNet来对胃癌进行分类。所提出的模型对所有四个多层组学数据集具有通用性。为了观察DOMSCNet模型的稳健性,使用八个外部数据集对所提出的模型进行了验证。实验结果表明,SelectKBest-最大相关性最小冗余-博鲁塔(SMB)的HFS技术优于所有其他HFS技术。在四个多层组学数据集和验证数据集上,所提出的DOMSCNet模型优于现有分类器以及其他所提出的分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5760/11966610/c13b52059d0f/bbaf115f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验