Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3055-3058. doi: 10.1109/EMBC48229.2022.9871198.
Whole Slide Images (WSIs) in digital pathology are used to diagnose cancer subtypes. The difference in procedures to acquire WSIs at various trial sites gives rise to variability in the histopathology images, thus making consistent diagnosis challenging. These differences may stem from variability in image acquisition through multi-vendor scanners, variable acquisition parameters, and differences in staining procedure; as well, patient demographics may bias the glass slide batches before image acquisition. These variabilities are assumed to cause a domain shift in the images of different hospitals. It is crucial to overcome this domain shift because an ideal machine-learning model must be able to work on the diverse sources of images, independent of the acquisition center. A domain generalization technique is leveraged in this study to improve the generalization capability of a Deep Neural Network (DNN), to an unseen histopathology image set (i.e., from an unseen hospital/trial site) in the presence of domain shift. According to experimental results, the conventional supervisedlearning regime generalizes poorly to data collected from different hospitals. However, the proposed hospital-agnostic learning can improve the generalization considering the lowdimensional latent space representation visualization, and classification accuracy results.
数字病理学中的全切片图像 (WSI) 用于诊断癌症亚型。由于在不同试验点获取 WSI 的过程存在差异,导致组织病理学图像存在变异性,从而使得一致的诊断具有挑战性。这些差异可能源于多供应商扫描仪的图像采集、采集参数的变化以及染色过程的差异;此外,在图像采集之前,患者的人口统计学特征可能会影响载玻片批次。这些可变性假设会导致不同医院的图像出现领域转移。克服这种领域转移至关重要,因为理想的机器学习模型必须能够在图像的不同来源上工作,而不受采集中心的影响。在这项研究中利用了一种域泛化技术来提高深度神经网络 (DNN) 的泛化能力,使其能够在存在领域转移的情况下处理未见的组织病理学图像集(即来自未见的医院/试验点)。根据实验结果,传统的监督学习模式在对来自不同医院的数据进行概括时表现不佳。然而,所提出的与医院无关的学习方法可以通过低维潜在空间表示可视化和分类准确性结果来提高泛化能力。