Suppr超能文献

多设备/染色组织学图像数据集注册,用于与领域无关的机器学习模型。

Registered multi-device/staining histology image dataset for domain-agnostic machine learning models.

机构信息

Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan.

出版信息

Sci Data. 2024 Apr 3;11(1):330. doi: 10.1038/s41597-024-03122-5.

Abstract

Variations in color and texture of histopathology images are caused by differences in staining conditions and imaging devices between hospitals. These biases decrease the robustness of machine learning models exposed to out-of-domain data. To address this issue, we introduce a comprehensive histopathology image dataset named PathoLogy Images of Scanners and Mobile phones (PLISM). The dataset consisted of 46 human tissue types stained using 13 hematoxylin and eosin conditions and captured using 13 imaging devices. Precisely aligned image patches from different domains allowed for an accurate evaluation of color and texture properties in each domain. Variation in PLISM was assessed and found to be significantly diverse across various domains, particularly between whole-slide images and smartphones. Furthermore, we assessed the improvement in domain shift using a convolutional neural network pre-trained on PLISM. PLISM is a valuable resource that facilitates the precise evaluation of domain shifts in digital pathology and makes significant contributions towards the development of robust machine learning models that can effectively address challenges of domain shift in histological image analysis.

摘要

组织病理学图像的颜色和纹理变化是由医院之间的染色条件和成像设备差异引起的。这些偏差降低了暴露于域外数据的机器学习模型的稳健性。为了解决这个问题,我们引入了一个名为扫描仪和移动电话的组织病理学图像(PathoLogy Images of Scanners and Mobile phones,PLISM)的全面组织病理学图像数据集。该数据集由 13 种苏木精和伊红染色条件下的 46 个人体组织类型组成,使用 13 种成像设备进行捕获。来自不同域的精确对齐的图像补丁允许在每个域中准确评估颜色和纹理属性。评估了 PLISM 的变化,发现它在不同域之间存在显著的多样性,特别是在全幻灯片图像和智能手机之间。此外,我们评估了使用在 PLISM 上预训练的卷积神经网络来改善域转移的效果。PLISM 是一个有价值的资源,它促进了数字病理学中域转移的精确评估,并为开发能够有效解决组织学图像分析中域转移挑战的强大机器学习模型做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/10991301/0ac9b3372aa6/41597_2024_3122_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验