Suppr超能文献

基于深度学习的幻灯片组织病理学图像分析框架。

Deep learning-based framework for slide-based histopathological image analysis.

机构信息

Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.

Department of Computer Science, Sun Moon University, Asan, 336708, South Korea.

出版信息

Sci Rep. 2022 Nov 9;12(1):19075. doi: 10.1038/s41598-022-23166-0.

Abstract

Digital pathology coupled with advanced machine learning (e.g., deep learning) has been changing the paradigm of whole-slide histopathological images (WSIs) analysis. Major applications in digital pathology using machine learning include automatic cancer classification, survival analysis, and subtyping from pathological images. While most pathological image analyses are based on patch-wise processing due to the extremely large size of histopathology images, there are several applications that predict a single clinical outcome or perform pathological diagnosis per slide (e.g., cancer classification, survival analysis). However, current slide-based analyses are task-dependent, and a general framework of slide-based analysis in WSI has been seldom investigated. We propose a novel slide-based histopathology analysis framework that creates a WSI representation map, called HipoMap, that can be applied to any slide-based problems, coupled with convolutional neural networks. HipoMap converts a WSI of various shapes and sizes to structured image-type representation. Our proposed HipoMap outperformed existing methods in intensive experiments with various settings and datasets. HipoMap showed the Area Under the Curve (AUC) of 0.96±0.026 (5% improved) in the experiments for lung cancer classification, and c-index of 0.787±0.013 (3.5% improved) and coefficient of determination ([Formula: see text]) of 0.978±0.032 (24% improved) in survival analysis and survival prediction with TCGA lung cancer data respectively, as a general framework of slide-based analysis with a flexible capability. The results showed significant improvement comparing to the current state-of-the-art methods on each task. We further discussed experimental results of HipoMap as pathological viewpoints and verified the performance using publicly available TCGA datasets. A Python package is available at https://pypi.org/project/hipomap , and the package can be easily installed using Python PIP. The open-source codes in Python are available at: https://github.com/datax-lab/HipoMap .

摘要

数字病理学与先进的机器学习(例如深度学习)相结合,正在改变全切片组织病理学图像(WSI)分析的模式。在数字病理学中,机器学习的主要应用包括自动癌症分类、生存分析和从病理图像进行亚型分类。虽然由于组织病理学图像的尺寸极大,大多数病理图像分析都基于补丁处理,但也有一些应用可以预测单个临床结果或对每张幻灯片进行病理诊断(例如癌症分类、生存分析)。然而,目前的基于幻灯片的分析是任务相关的,而基于 WSI 的基于幻灯片的分析的通用框架很少被研究。我们提出了一种新的基于幻灯片的组织病理学分析框架,该框架创建了一个 WSI 表示图,称为 HipoMap,可以应用于任何基于幻灯片的问题,并与卷积神经网络相结合。HipoMap 将各种形状和大小的 WSI 转换为结构化的图像类型表示。在使用各种设置和数据集的强化实验中,我们提出的 HipoMap 表现优于现有方法。在用于肺癌分类的实验中,HipoMap 显示了 0.96±0.026 的曲线下面积(提高了 5%),在使用 TCGA 肺癌数据进行生存分析和生存预测的实验中,c-index 为 0.787±0.013(提高了 3.5%),决定系数 ([Formula: see text]) 为 0.978±0.032(提高了 24%),作为具有灵活能力的基于幻灯片的分析的通用框架。与每个任务的当前最先进方法相比,结果显示出了显著的改进。我们进一步讨论了 HipoMap 的实验结果作为病理观点,并使用公开可用的 TCGA 数据集验证了性能。一个 Python 包可在 https://pypi.org/project/hipomap 上获得,并且可以使用 Python PIP 轻松安装该包。Python 中的开源代码可在:https://github.com/datax-lab/HipoMap

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17f0/9646838/05bcdced8640/41598_2022_23166_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验